NASA TECHNICAL NOTE ELECTROSTATIC-PROBE MEASUREMENTS OF PLASMA PARAMETERS FOR TWO REENTRY FLIGHT EXPERIMENTS AT 25 000 FEET PER SECOND by W. Linwood Jones, Jr., and Aubrey E. Cross Langley Research Center Hampton, Va. 23365 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1972 | | | | ής έπο | עס | | | | |---|---|---|---|---|--|--|--| | 1. Report No.
NASA TN D-6617 | 2. Government Access | ion No. | 3. Recipient's Catalog | No. | | | | | Title and Subtitle ELECTROSTATIC-PROBE MEASUREMENTS OF PLASMA | | | 5. Report Date
February 1972 | | | | | | PARAMETERS FOR TWO RE
AT 25 000 FEET PER SECON | XPERIMENTS | 6. Performing Organization Code | | | | | | | 7. Author(s) | | | 8. Performing Organiza | ation Report No. | | | | | W. Linwood Jones, Jr., and A | ubrey E. Cross | L-7984 | | | | | | | 9. Performing Organization Name and Address | | 10. Work Unit No. | | | | | | | NASA Langley Research Cent | | - | 115-21-01-01 | | | | | | Hampton, Va. 23365 | | | 11. Contract or Grant | No. | | | | | • | | F | 13. Type of Report an | d Period Covered | | | | | 2. Sponsoring Agency Name and Address | | **** | Technical No | | | | | | National Aeronautics and Spa | ce Administration | - | 14. Sponsoring Agency | | | | | | Washington, D.C. 20546 | | | , openiesg . (gene) | | | | | | 5. Supplementary Notes With appendix B by Lor | raine F. Satchell a | nd appendix C by W | illiam L. Weave | r. | | | | | Part of the information surements of Electron Densit presented in partial fulfillme Electrical Engineering, Virginia, June 1971. | y Profiles During nt of the requirement | a Blunt-Body Reenti
ents for the degree o | ry'' by W. Linwo
of Doctor of Phil | od Jones, Jr.
losophy in | | | | | Unique plasma diagnost lar blunt-body reentry spaced measured the positive-ion de probe measurements were m face in the aft flow field of th to 175 000 ft) with measured reentry velocity for each spa | rraft using electros
nsity profiles (shap
ade at eight discre
e spacecraft over t
densities of 108 to | static probe rakes a
be and magnitude) du
te points (1 cm to 7
the altitude range of
1012 electrons/cm ² | re presented. Turing the two flig
cm) from the ve
85.3 to 53.3 km
crespectively. | The probes ghts. The chicle sur- (280 000 Maximum | | | | | In the first flight exper
contaminated by ablation pro
the second spacecraft thereby | lucts from the space | cecraft nose region. | | | | | | | Comparisons of the propresented with discussion as cussed are the correlation of the good high-altitude agreenments, VHF antenna measure | to the probable cau
probe measureme
nent between electr | use of significant dis
nts with vehicle ang
on densities inferre | sagreement. Al
le-of-attack mot
ed from the prob | so dis-
tions and
e measure- | | | | | 17. Key Words (Suggested by Author(s)) Reentry communications; pla electrostatic (Langmuir) prol alleviation; microwave reflec motions; electron concentrati | es; blackout
tometer; body | 18. Distribution Statement Unclassified — | | | | | | | motions, electron concentrati | 011 | | | | | | | | 9. Security Classif. (of this report) | 20. Security Classif. (c | of this page) | 21. No. of Pages | 22, Price* | | | | | Unclassified | Unclassified | l , | 129 | \$3.00 | | | | | | | | 1 | |--|--|---------------------------------------|---| 1 | | | | · · · · · · · · · · · · · · · · · · · | | ### CONTENTS | P | Page | |--|------------| | SUMMARY | 1 | | INTRODUCTION | 1 | | SYMBOLS | 2 | | EXPERIMENT DESCRIPTION | 6 | | Flight Objectives | 6
6 | | Payloads | 7 | | Electrostatic Probe System | 8 | | · | 12 | | • | 12 | | | 13 | | ELECTROSTATIC PROBE THEORY | 13 | | FLIGHT DATA RESULTS AND DISCUSSION | 14 | | Measured Electrostatic Probe Ion Currents | 14 | | Thermocouple Probe Results | 15 | | Electron Densities Inferred by Electrostatic Probe | 15 | | Effects of Ablation Impurities on Electron Density | 16 | | Effects of Vehicle Angle-of-Attack Perturbations on Electron Density | 16 | | Effects of Water Injection on Electron Density | 17 | | Microwave Reflectometer Measurements | 18 | | | 18 | | · · · · · · · · · · · · · · · · · · · | 19 | | Comparison of Theoretical and Experimental Electron Density Profiles | 19 | | CONCLUSIONS | 21 | | APPENDIX A - ELECTROSTATIC PROBE THEORY | 22 | | Flowing Plasmas | 22 | | Directed Flow Parallel to Probe | 23 | | | 2 6 | | • | 29 | | Sample Calculation | 2 9 | | APPENDIX B - ELECTROSTATIC-PROBE AUTOMATIC DATA REDUCTION | | | PROCEDURE AND LISTINGS | 31 | | | Page | |---|------| | APPENDIX C $-$ ANALYSIS OF SPACECRAFT MOTIONS AND WIND ANGLES | . 56 | | Determination of Wind Angles | . 56 | | Summary of Wind-Angle Analysis | . 58 | | REFERENCES | . 59 | | TABLES | . 62 | | FIGURES | . 67 | # ELECTROSTATIC-PROBE MEASUREMENTS OF PLASMA PARAMETERS FOR TWO REENTRY FLIGHT EXPERIMENTS AT 25 000 FEET PER SECOND* By W. Linwood Jones, Jr., and Aubrey E. Cross Langley Research Center #### SUMMARY Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt-body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive-ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280 000 to 175 000 ft) with measured densities of 10^8 to 10^{12} electrons/cm³, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25 000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow-field contamination. Comparisons of the probe-measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle-of-attack motions and the good high-altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements. #### INTRODUCTION The plasma sheath (ionized gas) which envelops a spacecraft during entry into an atmosphere can disrupt radio communications and cause "radio blackout." This phenomenon has received much attention (refs. 1 and 2) from both the U.S. Department of Defense and the National Aeronautics and Space Administration because of the serious problems ^{*}Part of the information presented herein was included in a dissertation, "Probe Measurements of Electron Density Profiles During a Blunt-Body Reentry" by W. Linwood Jones, Jr., presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, June 1971. that it causes for mission planners. For instance, in manned flight missions there is a significant increase in the complexity of such onboard systems as navigation, guidance, and control due to the reduction of ground systems support during critical blackout periods. In other instances, provisions for onboard data storage and delayed playback, or even a recoverable package, may be required for data retrieval after blackout. Also, terminal-phase systems such as altimeters, landing radars, homing devices, and electronic countermeasures may be compromised for lack of real-time signal transmission. Consequently, a requirement exists for a fundamental understanding of the reentry plasma sheath and its interaction with spacecraft electromagnetic systems. A project called "Radio Attenuation Measurements (RAM)" has been conducted at Langley Research Center where flow-field plasma characteristics and the resulting attenuation of propagating electromagnetic waves have been investigated both experimentally and theoretically. (See ref. 3.) Experiments have been performed in both ground facilities and on reentry flights to determine radio-frequency plasma attenuation and flow-field electron density and collision-frequency distribution. This report presents electron density profiles (absolute magnitude and shape) inferred from electrostatic probe measurements during two blunt-body reentries at 7620 meters/second (25 000 ft/sec). A rake of eight negatively biased probes, located near the aft section of each spacecraft, collected positive ion current out to a normal distance of 7 cm (2.75 in.) and over an altitude range of 85.3 km (280 000 ft) to 53.3 km (175 000 ft). In addition, inferred electron densities are presented from VHF antenna measurements during both flights and from microwave reflectometer measurements during the second flight. Comparisons are made between the experimentally derived electron densities and theoretically
calculated values to assess the validity of present plasma flow-field models. Also the effects on electron density profiles of material injection (during the first flight) and spacecraft motions are discussed. Also included in this report are a discussion of electrostatic probe theory in appendix A, a description of the probe-data-reduction procedure and a listing of RAM C-I and C-II current and inferred density as a function of altitude and time for all probes in appendix B by Lorraine F. Satchell, and an analysis of spacecraft motions and wind angles in appendix C by William L. Weaver. #### **SYMBOLS** Values are given in both SI and U.S. Customary Units. The measurements and calculations in the text and appendix A were made in SI Units; those in appendixes B and C, in U.S. Customary Units. current, amperes; also projected area of probe, cm^2 Α accelerometer-measured accelerations (normal) $\mathbf{A_n}$ radius of probe sheath, $R_p + d_s$, cm a accelerometer-measured accelerations due to aerodynamic force along a_y, a_n Y-axis (tangential) and negative Z-axis (normal) \mathbf{D} body nose diameter, cm sheath thickness, cm $d_{\mathbf{S}}$ magnitude of electronic charge, 1.5921×10^{-19} coulomb е ratio of modified potential energy to kinetic energy, $\frac{x_p}{1+s^2}$ Η lateral angular momentum Н, H_{t} total angular momentum roll angular momentum (about X-axis), Ixp $H_{\mathbf{X}}$ positive ion current collected by a probe, amperes I,I_{+} directed current into probe, $\text{nev}_{\mathbf{f}}\left(2R_{\mathbf{p}}L\right)$, amperes I_d lateral moment of inertia, $\frac{I_Y + I_Z}{2}$ ų normalized probe current, $\frac{I_+}{I_-}$ I_n random ion current calculated for a probe, $\frac{\text{nev}_{+}}{4}(2\pi R_{\text{p}}L)$, amperes $\mathbf{I_r}$ moments of inertia about spacecraft axes, $kg-m^2$ I_X, I_Y, I_Z saturation positive ion current density, 0.4nev+, amperes-cm⁻² J_i Boltzmann's constant, 1.38044×10^{-23} joule-K⁻¹ k L probe length, cm L angular impulse M ion mass, g N_e electron density, electrons-cm⁻³ n electron density, electrons-cm⁻³, or ion density, ions-cm⁻³ p,q,r rotation rates about X-axis (roll), Y-axis (pitch), and Z-axis (yaw), rad-sec-1 R modified normalized probe current, $\frac{I_n}{\sqrt{1+S^2}}$, amperes R_p probe radius, cm radius at which particles will just be collected, cm S ion speed ratio, $\frac{v_f}{v_+}$ Te mean electron temperature, K V probe potential, volts; also spacecraft velocity or wind axis V' absolute magnitude of applied probe bias, volts V_{O} initial energy of ion entering sheath, $\frac{kT_{e}}{e}$, joule-coulomb⁻¹ V_{∞} plasma potential, volts v_{+} random thermal velocity of ions entering sheath, $\sqrt{\frac{8kT_{e}}{\pi M}}$, cm-sec⁻¹ v_f normal component of flow velocity, cm-sec⁻¹ v_{flow} flow velocity of ion flux past probe, cm-sec⁻¹ X,Y,Z spacecraft body-axis system x distance from nose along body axis, cm y distance from body along normal to body surface, cm α, β, η wind angles: angle of attack, sideslip angle, total wind angle, deg γ ratio of probe-sheath radius to probe radius, $\frac{a}{R_p}$ ϵ permittivity of free space $|\Delta\eta|$ absolute variation in total wind angle Θ inverted form of the Child-Langmuir 3/2-power law, $\frac{\text{volts}^{3/2}}{\text{ampere}}$ θ precession cone half-angle; also angle between flow velocity and probe axis, deg λ_D Debye length, $\frac{\epsilon_0 k T_e}{e^2 n}$, cm ν_{b} precession frequency of vector ω_{l} about body axis $\nu_{ m H}$ precession frequency of X-axis about angular momentum vector ρ charge density ϕ angular coordinate for payload referenced to electrostatic probe rake, deg χ_{p} normalized potential difference between probe and plasma, $\frac{e(V-V_{\infty})}{kT_{e}}$ ω_1 lateral angular velocity, $\sqrt{q^2 + r^2}$, rad-sec⁻¹ Subscripts: cr critical o initial An arrow over a symbol denotes a vector. #### EXPERIMENT DESCRIPTION Three flight experiments were conducted in the medium velocity (7620 meters/second (25 000 ft/sec)) reentry region to obtain quantitative measurements of plasma parameters about a hemisphere-cone body and to test radio-attenuation alleviation techniques. Only the first two flights are discussed herein, since the analysis of probe data for the third flight is incomplete. (Descriptions of the third flight and the preliminary probe results are found in refs. 4 and 5.) This section provides a brief description of the flight objectives, launch vehicles, and payload experiments. A description of the electrostatic probe system is given which includes the mechanical construction of the probe rake, the electronic circuitry, characteristics of the circuit components, and data format. Also described briefly are other plasma diagnostic experiment systems onboard the respective payloads. #### Flight Objectives The primary objectives of the first flight (RAM C-I) were to test the effectiveness of water injection as an alleviation technique and to establish the operational system injection parameters (mass flow, penetration distance, and injection orifice size and location) necessary to achieve a required level of signal recovery. During this flight, electrostatic probes were the principal diagnostic instrumentation for assessing the plasma alleviation. In the second flight (RAM C-II), the primary objective was to measure the electron density time and altitude histories at several locations along the spacecraft using microwave reflectometers and electrostatic probes. Flight details are discussed in reference 6 for RAM C-I and in reference 7 for RAM C-II. #### Launch Vehicles Similar four-stage solid-fuel Scout vehicles were used to launch the RAM C-I and C-II payloads from the NASA Wallops Island Station in Virginia. The two Scout vehicles designated S-159 and S-168, ready for launching, are shown in the composite photograph of figure 1. Pertinent vehicle-payload identification and launch information are given in the following table: | Designation | | Launch | | | |-------------|----------|----------|-----------|--| | Scout | Payload | Date | Time, GMT | | | S-159 | RAM C-I | 10-19-67 | 17:33:00 | | | S-168 | RAM C-II | 8-22-68 | 15:16:00 | | Approximate staging sequencing applicable to the RAM C-I and C-II launch vehicles and payloads with important events is shown in figure 2(b). The launch vehicles transported their respective payloads to apogees greater than 220.5 km (720 000 ft) before propelling them back into the earth's atmosphere. To minimize lateral rotations and trajectory dispersion during the thrusting of the fourth-stage motor which was unguided, the motor and spacecraft were spin-stabilized just prior to motor ignition. Tip-off moments produced by the separation of the expended fourth-stage motor at an altitude of about 113 km (370 000 ft) caused coning of the spacecraft and a resulting oscillatory relative wind angle. The earth-relative reentry flight-path angle was a nominal -15°, and both payloads reached their maximum velocities at an altitude of 67.0 km (220 000 ft). Some pertinent dynamic characteristics for each payload are given in the following table: | Devley | Spin ra | ate | Maximun | n velocity | Total wind angle over | |----------|---------|------|---------|------------|---------------------------| | Payload | rad/sec | rps | m/sec | ft/sec | probe data
period, deg | | RAM C-I | 18.5 | 2.95 | 7670 | 25 165 | 5.0 | | RAM C-II | 19.1 | 3.04 | 7678 | 25 193 | 4.0 | The reentry data periods occurred just north of Bermuda as shown in the RAM C-II ground track. (See fig. 2(a).) The RAM C-I and C-II payloads flew nearly identical reentry trajectories, as indicated in figure 3 and in table I; and for this reason, the RAM C-I trajectory was used in the data reduction for both flights. Although the use of the RAM C-I trajectory produced approximately a 365.8-meter (1200-ft) bias error in the altitude for all RAM C-II probe data, this procedure introduced negligible errors in the inferred electron and ion densities. #### Payloads The payload geometries were essentially identical and are shown in figure 4. Each payload consisted of an approximately 15-cm (6-in.) radius hemispherical nose followed by a 9^o half-angle cone and had an overall length of about 130 cm (51 in.). The physical characteristics of each payload are given in the following table: | 1 | | - | i | | 1 | | | |--------------------|--|--|--|-------------------------------|-------------------------------------|--|---| | | | Nose diameter | | ength | Weight before launch | | Afterbody | | 140Se material | cm | in. | cm | in. | kg | lb | material | | NARMCO 4028 | 31.90 | 12.56 | 130.25 | 51.28 | 121,1 | 267.0 | Teflon | | (Phenolic-graphite | | | | | | | | | charring ablator) | | | | | | | | | Beryllium | 30.48 | 12.00 | 129.54 | 51.00 | 121.8 | 268.5 | Teflon | | nose cap* | | | İ | | | | | | | (Phenolic-graphite
charring ablator)
Beryllium | Nose material cm NARMCO 4028 31.90 (Phenolic-graphite charring ablator) Beryllium 30.48 | Nose material cm in. NARMCO 4028 31.90 12.56 (Phenolic-graphite charring ablator) Beryllium 30.48 12.00 | Nose material cm in. cm | Nose material cm in. cm in. | Nose material cm in. cm in. kg | Nose material cm in. cm in. kg lb | ^{*}Ejected at time of electrostatic-probe retraction. RAM C-I had a phenolic-graphite charring ablator on the hemispherical nose, whereas the nose of RAM C-II was covered by a beryllium-cap heat sink. Since RAM C-I was primarily a material-injection experiment, the ability to
maintain the integrity of the injection orifices during the ablation period was mandatory; therefore, the phenolicgraphite material was selected. (See ref. 8; RAM-CA designation is synonymous with RAM C-I.) An analysis of a sample of the NARMCO 4028 used to fabricate the heat shield showed that it contained about 1100 μ g/g sodium. The analysis was incapable of detecting potassium, if present, at less than 3600 μ g/g which means that the ablator could have contained up to 4700 $\mu g/g$ of alkali. The beryllium nose cap and the teflon were found to be free of any significant amounts of alkaline impurities. For a sample of teflon, the analysis showed the alkali content to be less than 5 μ g/g. Thus, during the RAM C-I reentry, the ablation of the nose fed easily ionizable alkali metals into the flow-field boundary layer. Since the primary objective of the RAM C-II flight was plasma flow-field diagnostics, the nonablative beryllium cap was selected to keep the flow field free of ablative contaminants so that a comparison could be made of measured plasma characteristics with pure-air theoretical calculations. The beryllium cap was ejected at an altitude of 56.4 km (185 000 ft) prior to the surface melting, and thus exposed a teflon-covered nose. For both flights, the effects of teflon ablation from the afterbodies are believed to be negligible at altitudes above 56.4 km (185 000 ft) (refs. 7 and 9) since the teflon had a low-alkalimetal contamination level; also, the ablation rates there were much less than those for the nose. The location of the electrostatic and thermocouple probe rakes, the various radio-frequency antennas (diagnostic and instrumentation) on both payloads, and the water-injection orifices on the RAM C-I payload are shown in figure 5. Table II gives exact coordinate location and position of the various system sensors for both payloads. #### Electrostatic Probe System Design philosophy. Realistic predictions of the electromagnetic wave attenuation to be experienced during atmospheric entry are dependent upon several factors, the foremost of which is the physical nature of the plasma itself. The requirement for accurate knowledge of gas composition is more stringent for an analysis of this problem than for other reentry problems such as heat transfer or aerodynamic flow. The reason for this requirement is that the free electrons, which control the electrical conductivity of the gas, are a trace species and, as such, require a comprehensive nonequilibrium flow-field analysis including finite-rate chemistry to determine the degree of gas ionization. For example, approximately 40 finite-rate chemical kinetic reactions involving 11 plasma species (free electrons, molecular and atomic ions, molecules, and atoms) must be considered in theoretical calculations of electron concentration. In addition, the dominant chemical kinetic process is dependent upon the velocity and body shape of the reentering spacecraft. Moreover, calculations are more difficult to perform as one moves aft from the stagnation region because not only is a complete understanding of the local gas conditions required, but also of the entire gas history from the shock-entry point of each streamline to the location of interest. The objective of the RAM-C electrostatic probe experiment for both flights was to determine experimentally the electron density profiles in the aft flow field in order to assess the validity of the theoretical calculations and to provide experimental data upon which to improve the analytical model used. The design of the RAM-C electrostatic probe system and the calibration testing in ground plasma facilities are discussed in detail in reference 4. Configuration of electrostatic probe rakes on RAM C-I and C-II.- A photograph of the electrostatic probe rake is shown in figure 6(a); and the exterior configuration, a sectional view of the leading edge, and standoff dimensions of the ion collectors are shown in figure 6(b). Each of the iridium ion collectors extended 0.0254 cm (0.010 in.) beyond the wedge-shaped beryllium oxide leading edge of the rake. The two larger iridium pieces, one on each side of the rake, were electrically common and served as electron collectors. Iridium was chosen as the probe collector material because of its high melting temperature, high electronic work function, and negligible oxidation property. The beryllium oxide leading-edge material was a high-temperature insulator which mechanically and electrically separated the ion collectors and the electron collectors. The beryllium oxide leading edge was a 60° wedge with a leading-edge radius of 0.0254 cm (0.010 in.) and was inclined at an angle of 45° with respect to the payload surface. The main body of the probe was constructed of a phenolic fiber-glass ablation material. Probe circuitry. - A fixed bias of -5.0 volts, referenced to the electron collectors, was applied simultaneously to all ion collectors to attract positive ions. Figure 7 gives a schematic drawing of the probe electronic system on both the RAM C-I and RAM C-II payloads. As each probe continuously collected plasma current, the mechanical commutator sampled the voltage developed across the probe load resistors and calibrate resistors and fed the signals to the logarithmic amplifier at the rate of 300 samples per second. The voltage developed across the probe load resistor was converted by the logarithmic amplifier to drive a telemetry subcarrier oscillator. A photograph of typical flight components is shown in figure 8. For the RAM C-I experiment, the output of the logarithmic amplifier was connected single-ended to the input of the subcarrier oscillator; whereas on the RAM C-II experiment the output of the amplifier was connected to a differential-input subcarrier oscillator. This modification in the electronic system was made to correct an anomaly which occurred during the RAM C-I flight. The occurrence of the anomaly was ascertained during the onboard calibration of the logarithmic amplifier. The problem presented itself at an alti- tude of about 67.0 km (220 000 ft) when the logarithmic amplifier output including all calibrate levels unexpectedly went to zero. During water injection, the amplifier returned to normal operation; however, after the injection stopped, the output returned to zero. Approximately 3 seconds later at 61.0 km (200 000 ft), the amplifier returned to normal and continued so for the remainder of the flight. The anomaly was analyzed and it could be reproduced in the laboratory by connecting a -1.85-volt potential between the electron collector and the payload ground. It is surmised that during the flight the electron collectors and the spacecraft metallic skin assumed different floating potentials in the plasma. This condition caused the internal input diodes of the logarithmic amplifier to conduct and thereby reduced the amplifier output to zero. The differential connection used on the RAM C-II system corrected the situation by effectively adding a large resistance (10 megohms) in series with this unwanted potential and thus prevented the diodes from conducting. Logarithmic amplifier. - The solid-state logarithmic amplifier was developed specifically for the electrostatic probe experiments. The device was a low-level input. adjustable high gain, chopper-stabilized dc amplifier which converted a differential highimpedance input into a differential low-impedance output. Figure 9(a) shows the dynamic (commutated at 300 samples/sec) input-output voltage characteristics of the amplifiers used for flight. As can be seen from the figure, the device provided an output proportional to the logarithm of the input voltage for greater than a three-decade range. The amplifier gain was adjusted so that the voltage developed by an input current from the probes of at least 10^{-6} ampere, across the load resistor of 400 ohms, would be on the reasonably linear section of the characteristic curve. The maximum input current was 10⁻³ ampere and the minimum current value was determined by system noise (approximately 5×10^{-7} ampere for the RAM C-I experiment and 10^{-7} ampere for the RAM C-II experiment). The amplifier characteristics shown in figure 9(a) were obtained just prior to flight by calibrating the entire probe system as installed in the spacecraft. This calibration technique used a range of known resistances that were externally connected in sequence across the biased probe electrodes and thereby simulated a range of plasma currents. This calibration should not be confused with the onboard calibration the main purpose of which was to provide certain pulse levels in each data frame for automatic data reduction requirements. Since the signal to the amplifier was commutated at 300 samples per second, good dynamic response was needed to reproduce the input accurately. Figure 9(b) shows a typical pulse-response curve of the amplifiers. With a delay time of less than 100 microseconds and rise and fall times of less than 75 microseconds each, the response was sufficient for data samples of approximately 3 milliseconds duration. For data-reduction purposes, only the center 50 percent of the pulse width was used. Probe-experiment characteristics and data format. The format used for electrostatic probe information from the logarithmic amplifier output, including currents from the probes and from the calibrates, is presented in figure 10. Shown in figure 10 is one complete data frame which has a duration of 100 milliseconds. There are five calibrate levels for each frame, which correspond to currents of 0.1, 1.0, 10.0, 100.0, and 1000.0 microamperes. Between the calibrate sequences are three consecutive samplings of the eight ion collectors. One profile measurement represents about 26.4 milliseconds or about 8 percent of a complete payload roll motion. The sampling rate of 300 samples per second was selected so that at least two data formats
would be completed during the off time of the water-addition cycling system on RAM C-I. The same sampling rate was maintained for the RAM C-II experiment. Thermocouple probes. - On both of the RAM-C payloads, a rake of thermocouples was located diametrically opposite the electrostatic probe rake to monitor the temperature of the leading edge. On RAM C-I, both the thermocouple and electrostatic probes were in line with the water-injection sites to insure similar heating environments. The external configuration of the thermocouple probe fin was the same as that of the electrostatic probe fin and is shown in figure 11. Instead of electrodes, however, three thermocouples were embedded 0.0635 to 0.1016 cm (0.025 to 0.040 in.) from the leading edge of the wedge. The thermocouples were platinum—platinum+13-percent-rhodium and were located 2, 4, and 6 cm (0.79, 1.57, and 2.36 in.) from the payload surface. The useful measurement range of the thermocouples was from 255 to 1977 K (0° to 3100° F). At elevated temperatures, the insulating properties of the beryllium oxide degraded. and unwanted leakage currents flowed between ion collectors and between ion and electron collectors. The thermocouple probe was used therefore to determine the altitude at which probe heating became significant. The electrical resistivity degradation affected the accuracy of the inferred electron density because the leakage currents added to the measured plasma current and thereby caused a higher than actual electron density to be inferred. In reference 6, the electrostatic probe data were considered to be unusable in an absolute sense once the local probe temperature exceeded 811 K (1000° F). An improved analysis given in reference 4 estimated that the leakage current was on the order of 100 microamperes for a thermocouple temperature of 1366 K (2000° F). For both RAM-C flights the inferred plasma density was greater than $10^{11}\,\mathrm{electrons/cm^3}$ when the local temperature for a given probe exceeded 1366 K; thus, the error in the inferred density at that point was less than a factor of two. For higher leading-edge temperatures, the leakage current probably exceeded the plasma current; therefore, above 1366 K the data were considered to be degraded for useful plasma-density interpretation purposes. Retraction of probe rakes. - Although it was desirable to make electrostatic probe measurements over the entire blackout data period from 85.3 to 24.4 km (280 000 to 80 000 ft), certain restrictions were imposed. The high heating rates predicted for the intermediate altitude range from 61.0 to 30.5 km (200 000 to 100 000 ft) would result in structural failure of the probes which could endanger the stability of the payload itself. Therefore, the rakes (electrostatic and thermocouple) were simultaneously retracted into the base region of the payload at a predetermined altitude by programer action. The RAM C-I rakes were retracted at an altitude of 53.6 km (176 000 ft). RAM C-II probe retraction was initiated simultaneously with the beryllium cap ejection at 56.4 km (185 000 ft), but the effects of retraction on the inferred density were not noted until 55.9 km (183 400 ft). .____ #### RAM C-I Water-Injection System During the RAM C-I flight, water was periodically injected into the flow field from the spacecraft nose to provide for electron density reductions in the peak attenuating layer of the flow field. The water was injected at varying flow rates with specific penetrations over an altitude range of 83.2 to 33.8 km (273 000 to 111 000 ft). The injection locations are shown on the payload sketch in figure 5. Locations and positions of the nozzles are also given in table II. The electrostatic probe rake and two VHF slot antennas were located in line with the injection sites and were the principal diagnostic instrumentation for assessing the plasma alleviation. The resultant programed variation of flow rates for the RAM C-I experiment is given in table III, with the altitude shown for the start of each pulse. Typical water flow-rate pulses are shown as a sequence of valve-on times. One complete injection cycle is shown and the cycles were repeated every 4 seconds. The valve-on times were 230 milliseconds and the valves were opened at 0.5-second intervals. A more detailed description of the RAM C-I water-injection system can be found in reference 6. #### RAM C-II Microwave Reflectometer System A four-frequency microwave reflectometer system was used to infer the peak electron density time and altitude histories about the RAM C-II spacecraft. A plasma-density measurement range of three decades (10^{10} to 10^{13} electrons/cm³) was provided by the reflectometer system. The microwave reflectometer technique used the reflectivity of the plasma to infer the electron density and phase measurements to infer the electron density profile shape. Microwave antennas for the four frequencies (L-, S-, X-, and Ka-bands) were located at each of the four body stations (except station 1, L-band excluded), for a total of 15 antennas (fig. 5). Antenna locations are listed in table II. Greater detail on the microwave reflectometer system may be found in reference 7 and in table II. #### VHF System It has been shown that significant pattern changes can occur for plasma-clad cylindrical antennas when the electron density passes through the critical value. (See ref. 10.) These pattern changes are also accompanied by rapid changes in input impedance or input voltage standing wave ratio (VSWR). Received signal strength and onboard antenna VSWR were monitored during the RAM C-I and C-II flights and were used to determine the occurrence of the VHF critical electron density. The antenna VSWR was monitored by onboard directional couplers, and the antenna patterns were reconstructed by use of the signal received from the spinning spacecraft. There were several ground, airborne, and shipborne receiving stations with different look angles; thus, patterns were obtained in several planes. The arrangement of receiving stations for RAM C-II is shown in figure 2(a). Two types of VHF antennas (cavity-backed slots and circumferential slot arrays) were used for the flights, as shown in figure 5. For the RAM C-I payload, two diametrically opposed, axially oriented, 259.7-MHz cavity-backed slot antennas transmitted the real-time telemetry, and an aft-positioned circumferential slot array (ring) antenna transmitted the delayed-time telemetry. In comparison, on the RAM C-II payload, the real-time and delayed-time telemetry systems utilized a pair of aft-located circumferential slot arrays (ring antennas). The axially oriented slot antennas on RAM C-I were in line with the material-injection orifices and the electrostatic probes. The ring antennas for all payloads were just forward of the electrostatic probes. A more complete description of the VHF antennas on RAM C-I may be found in references 6 and 11 and in table IV. #### ELECTROSTATIC PROBE THEORY The RAM-C electrostatic probe measurements were interpreted by use of a free-molecular cylindrical probe theory modified to account for a directed-ion flux due to the plasma flow. This theory was developed by Scharfman (refs. 12 and 13) based on the works of Hok et al. and Smetana (refs. 14 and 15, respectively) and is summarized in appendix A. The configuration of the RAM-C probe rake is such that in relation to the flowing plasma, each ion collector appears to be a cylindrical wire 0.0254 cm (0.010 in.) in diameter and 0.5385 cm (0.212 in.) long, which is inclined at an angle of 45° with respect to the plasma flow. Experimental programs were performed at Langley Research Center, Stanford Research Institute, and Cornell Aeronautical Laboratories to verify that the RAM-C electrostatic probe rake could be used to infer accurate localized ambient plasma electron densities. (See refs. 4, 13, 16, and 17.) Typical results from references 13 and 17 are shown in figure 12. The conclusion based on this work is that free-stream electron density can be inferred within ±20 percent by using the described theory for the RAM-C flight conditions for plasma densities from 10^{10} to 10^{11} electrons/cm³ and within a factor of two over the 10^9 to 10^{13} electrons/cm³ range. #### FLIGHT DATA RESULTS AND DISCUSSION #### Measured Electrostatic Probe Ion Currents Ion currents measured by each of the eight electrostatic probes onboard the RAM C-I and C-II flights are presented as a function of altitude from 85.3 to 53.3 km (280 000 to 175 000 ft) in figures 13 and 14, respectively, and are listed in appendix B. (Altitudes for RAM C-II are too low by 0.3658 km (1200 ft).) In the figures, the measured probe-current data points are represented by the symbols which have been interconnected in order to show small variations clearly. Probes for both flights indicate an initial measurable current at an altitude of about 85.3 km (280 000 ft). Lowest measurable current for the probe electronic systems was about 10^{-7} A. Likewise, system saturation current was 10^{-3} A. Figures 13(a) to 13(d) show the currents measured by the electrostatic probes aboard RAM C-I. The effects of periodic water injection into the flow field can be seen as respective periods of greatly reduced measured currents for all eight probes. The anomaly period, discussed in an earlier section, occurred between 67.1 and 61.0 km (220 000 and 200 000 ft). The data shown in the figures during the anomaly period are considered to be valid since they were selected only when the onboard calibrates indicated normal amplifier operation. All data are valid after the anomaly period. The probes aboard RAM C-I were retracted at 53.6 km (176 000 ft) from the aft-flow-field region into the payload base region. The probes continued to make measurements after retraction, but the analysis of these data is not presented in this report. Immediately after retraction, the outermost probes still
indicated system saturation current because of electrical degradation of the beryllium-oxide probe insulator induced by aerodynamic heating. Figures 14(a) to 14(d) show the electrostatic-probe-measured ion currents for RAM C-II. Effects of retraction can be seen at about 55.5 km (182 000 ft) in figures 14(a) to 14(c) as a steep dropoff of measured current. Again, the outermost probes of figure 14(d) were still saturated immediately after retraction because of leakage current through the degraded probe insulator. The small sinusoidal-type variation superimposed on the curves shown in figures 13 and 14 are variations in the plasma density due to spacecraft motion. These variations will be discussed in detail in a later section and in appendix C. #### Thermocouple Probe Results An accurate knowledge of the probe-rake leading-edge temperature during reentry was necessary for valid interpretation of the fixed-bias probe currents because at thermocouple temperatures greater than 1366 K (2000°F), the insulating properties of the dielectric wedge were degraded to the point that the inferred plasma densities were questionable. Therefore, the first task in the data-reduction procedure was to examine the thermocouple data and to identify those probe data for which this threshold had been exceeded. Measured thermocouple temperatures for both the RAM C-I and C-II reentries are presented in figure 15. Overall, for corresponding thermocouples at identical altitudes, the temperatures of RAM C-I were less than those of RAM C-II most likely because of the cooling effects of water injection which can be seen on the RAM C-I curves. Water-injection cycles for RAM C-I are shown at the top of the figure. The RAM C-I and RAM C-II data are presented in figure 16 as constant-temperature profiles of normal standoff distance y to a given temperature boundary plotted against altitude. At any altitude, the temperature at any probe location on the leading edge may be determined from the intersection of a horizontal-probe location line, a vertical-altitude line, and a constant-temperature contour. When, for a given probe, this intersection occurs above the 1366 K (2000° F) contour, the interpretation of these data is questionable. #### Electron Densities Inferred by Electrostatic Probe By use of the probe interpretation discussed in appendix A, the collected ion currents given in figures 13 and 14 were converted into respective ion (electron) densities for the two flights. (Flow-field calculations (ref. 9) indicate that positive-ion and electron densities are very nearly equal for the RAM-C trajectory.) The electron densities for RAM C-I are shown in figure 17 and for RAM C-II in figure 18. The electron densities plotted against time and altitude are also tabulated for both flights in appendix B. The RAM C-I and RAM C-II results after probe retraction should be disregarded since no temperature and velocity data are presently available to allow proper interpretation of the ion current. Flow-field electron-density profiles (electron density plotted against standoff distance y) were determined during both flights. Typical results are shown in figure 19 for selected altitudes during the RAM C-I flight where no water-injection effects were present and in figure 20 for similar altitudes on RAM C-II. The data represent the time-averaged electron density (averaged over one spacecraft revolution) at a given altitude for each probe, and the bars in figure 20 represent the peak-to-peak density change due to body motions, to be discussed in a later section. The profiles for RAM C-I and RAM C-II flights are similar, although there was a slight difference in the absolute level at the specified altitudes. These differences are also observed in overlays of electron density plotted against altitude for RAM C-I and RAM C-II given in figure 21. #### Effects of Ablation Impurities on Electron Density Since the nose materials for the two RAM spacecraft were different (charring ablator for RAM C-I, nonablating heat sink for RAM C-II), a comparison can be made between contaminated and noncontaminated reentry plasma flow fields. The electrondensity histories for RAM C-I and RAM C-II are superimposed for comparison in figure 21. The electron density for RAM C-I is approximately a factor of 2 higher than that for RAM C-II for the altitude range of 85.3 to 73.2 km (280 000 to 240 000 ft). Below this altitude, RAM C-II results are slightly greater than those for RAM C-I, although the RAM C-I anomaly period and the effects of material addition make a quantitative comparison less meaningful. The differences in measured electron density between these flights could be attributed to ablation product contamination effects because the payloads were nearly geometrically identical and they flew nearly identical trajectories. The RAM C-I charring phenolic-graphite nose fed easily ionizable alkali metals (sodium and potassium constituted approximately 1000 to 4000 μ g/g in the virgin material) into the flow-field boundary layer, whereas the nonablating beryllium nose cap on RAM C-II did not contaminate the flow. For both spacecraft the teflon afterbody did ablate slightly; however, additional ionization was not probable because here the alkali metal content was kept below 5 ppm of teflon. A detailed discussion of alkali ablation product contamination of the RAM-C flow field is given in reference 9. #### Effects of Vehicle Angle-of-Attack Perturbations on Electron Density An analysis of the accelerometer data (appendix C) revealed that each payload underwent small angle-of-attack oscillations which produced variations in the ion current collected by all probes and variations in the microwave reflectometer measurements (RAM C-II). This effect is more clearly observed in the RAM C-II results (fig. 18) since these results are not disturbed by water injection. Variations in electron density at the probe station were produced because the payload was at an angle of attack (unsymmetrical flow field about payload) while spinning at 18.84 rad/sec (3 rps). When the payload experienced a positive angle of attack (positive normal acceleration), the electrostatic probes were on the windward side of the payload and sensed a compression of the flow field. Conversely, for a negative angle of attack (negative normal acceleration), the probes sensed the leeward (less dense) side of the flow field. A comparison of the RAM C-II vehicle angle-of-attack motions (determined by accelerometer data) with electron density (inferred from electrostatic probe 1) is shown for the altitude region from 59.4 to 55.8 km (195 000 to 183 000 ft) in figure 22. As seen in the figure, small angle-of-attack motions produced peak-to-peak density fluctuations in the aft part of the flow field approaching a factor of three. The sizable density variations close to the payload for relatively small changes in angle of attack can be one of the reasons that signal-attenuation models do not always accurately predict plasma-caused signal losses when normal zero angle-of-attack plasma profiles are used. #### Effects of Water Injection on Electron Density The effectiveness of water injection as a plasma alleviant in the RAM C-I flow field was assessed by means of two VHF slot antennas and the electrostatic probe rake located in line with the injection sites. The probe measurements provided an excellent means of determining injectant penetration distances as well as the resultant magnitudes of the suppressed plasma. The amount of plasma suppression due to water injection on the RAM C-I plasma electron density is seen in figure 23. In the upper part of the figure, the water injection pulses are shown with varying magnitude. (Flow rates are given in table III.) Each pulse caused corresponding decreases in measured electron density. Cycle 1 (not shown in the figure) had no flow because of a slow fill rate in the lines. The very low flow rates of cycle 2 produced no detectable plasma alleviation for any of the probes. The larger flow rates of cycle 3, particularly the side-injection flow rates 3 and 4, caused appreciable electron-density reduction for all probes. Electron-density profiles for the various lateral injection flow rates of cycle 3 are shown in figure 24. Here, it is clearly seen that increasing flow rates are more effective in reducing electron density and in penetrating farther out into the flow. The electron-density profiles during stagnation injection (cycle 4, flow rate 5) are shown in figure 25 for selected altitudes over the 593 meter (1947 ft) altitude range. The probe electronic system anomaly occurred immediately after cycle 4, flow rate 6, and persisted through cycle 4, flow rate 4. For intervals during the periods of water injection, however, the amplifier returned to normal operation and allowed reliable probe measurements. The effectiveness of the water-injection technique was assessed by comparing density profiles with water injection against those without water for the same altitude range. Alleviation effects of water injection were noted by the ground stations on the signals received from all the onboard radio-frequency systems and good correlation was found between the probe electron-density profile changes and the observed attenuation changes of the signal strengths. #### Microwave Reflectometer Measurements The location and magnitude of the peak electron density inferred by the station 4 microwave reflectometers agree with the electron-density profiles inferred by the electrostatic probes for the RAM C-II flight. This good agreement lends credence to both measurements since both measured and theoretical electron-density gradients along the aft payload surface are small (refs. 7 and 9, respectively). The microwave phase data (fig. 35 of ref. 7) indicate that there was a strong density gradient between the payload surface and a normal distance into the flow of 1 to 2 cm. Beyond this distance the
profile appeared to be nearly uniform for another several centimeters. The magnitudes of the electron density inferred by the probes and microwaves are also strongly correlated as shown in the longitudinal profiles of peak electron density for constant altitude. (See fig. 26.) In figure 26, the time-averaged peak electron densities as indicated by the reflectometer are plotted against distance along the body, where zero on the abscissa corresponds to the payload nose. Also shown in the figure for purposes of comparison are the time-averaged electron densities (averaged over one body revolution) for probes 1 and 8 (innermost and outermost probes, respectively). The bar on the probe data represents the peak-to-peak density fluctuation due to body motions. #### VHF Antenna Measurements The received VHF signal strengths (recorded at the Bermuda and U.S. Navy Ship (USNS) Twin Falls Victory stations) and the reflected power for the onboard antennas for RAM C-I are presented in figures 27 and 28 and for RAM C-II in figure 29. The Bermuda station was located approximately broadside to the payload during the data period and the Twin Falls Victory station was directly down range. (See fig. 2(a).) The peak electron density at a given antenna location was inferred from the region where the received signal strength ripple pattern (due to spinning payload) and the onboard antenna reflected power changed abruptly. In reference 10, these changes were shown to occur at the critical electron density; however, since the RAM-C experimental conditions were slightly different than those in reference 10, the peak electron density is estimated to be the critical value within a factor of two uncertainty. For the RAM C-I records, the time period of interest is from 385 to 394 seconds. In the Bermuda 225.7-MHz record, the pattern ripple is about 30 dB prior to the critical electron-density region (indicated by the arrows) which is in agreement with the measured free-space patterns in the equatorial plane. The ripple structure diminishes markedly in the critical electron-density region and then resumes as attenuation due to an overdense plasma occurs. The same sequential change was also noted by the Bermuda station in the 259.7-MHz antenna pattern ripple structure during a similar time frame. A related change in the pattern ripple structure was also observed for both antennas in the signal received at the USNS Twin Falls Victory station between 386 and 394 seconds. At 386 seconds, the plasma electron density over the antennas is negligible and the antenna pattern ripple is about ± 2 dB. Also the mean level of the signal received at the two frequencies is different by about 16 to 20 dB in absolute level. Both the magnitude of the pattern ripple and the absolute power levels agree very well with those predicted from the nose-on free-space absolute antenna patterns. During the time period from 390 to 392 seconds, the 225.7-MHz record experiences a 20-dB dip in the received signal level as the plasma goes through critical density. A similar but smaller signal-level dip also occurs at 259.7 MHz. The time of occurrence of these amplitude dips in the received nose-on signal closely correspond to the time period where a significant decrease in pattern ripple was observed from the broadside direction. The records of reflected power to both the 225.7-MHz and the 259.7-MHz antennas are shown in the lower parts of figures 27 and 28. The sharp rise or increase in reflected power with the simultaneous occurrence of critical electron density over the antenna aperture corresponds to that altitude range where the pattern ripple changes were noted. For RAM C-II, nearly identical antenna effects were observed, as shown in figure 29. #### Comparison of Inferred Electron Densities for the RAM-C Flights The plasma diagnostic results for both flights are shown in figure 30 for the purpose of comparison. They include electron density as a function of altitude inferred from the RAM C-II electrostatic probes, RAM C-II microwave reflectometers, and the RAM C-I and RAM C-II VHF antenna measurements. The data presented for electromagnetic techniques are time-averaged peak electron densities. The probe data represent the envelope of maximum to minimum values for all probes. All inferred densities are corrected for body location and are referred to the probe station by use of the appropriate longitudinal profile in figure 26. #### Comparison of Theoretical and Experimental Electron Density Profiles Calculated electron density profiles for the RAM-C flights were provided by the authors of reference 9. These calculations began with pressure distributions derived from equilibrium inviscid flow-field solutions for sphere-cone shapes. A nonequilibrium streamtube method provided temperature, density, and composition (including electron concentration). Streamline positions were determined by means of mass flow conservation. An equilibrium thin boundary-layer solution was adapted for use with nonequilibrium edge conditions, and the combined viscous-inviscid solution was iterated to account for vorticity and displacement thickness. Inviscid streamline values were discarded upon entry into the boundary layer and were replaced by calculations based on conditions in the boundary layer. The flow-field solutions described are not valid at altitudes above about 70.1 km (230 000 ft). It should be noted that ambipolar diffusion of the charged particles, which cannot be included in this treatment, was estimated in reference 9 to become an important influence at altitudes higher than 70.1 km (230 000 ft). For RAM C-II the clean-air assumption should have been valid down to 56.4 km (185 000 ft) where the beryllium nose cap was ejected, but for RAM C-I the flow field was contaminated by ablation products from the phenolic-graphite nose. For both bodies the teflon afterbody did ablate to some extent, but no additional ionization would result because the alkali metal content was kept below 5 ppm in the heat shield. There is, however, an unanswered question concerning the reduction of the electron density due to the electrophilic action of teflon ablation products. When the measured electron-density profiles shown in figures 19 and 20 were compared with the calculated profiles previously mentioned, the measured profiles were found to be lower and flatter than the calculated ones. Also the measurements appeared to extend to greater distances from the body surface than had been anticipated. A typical comparison is shown in figure 31 with the RAM C-II data bars representing the envelope of probe data (due to body motions). Comparison of the probe data with other available plasma flow-field calculations (ref. 18) also indicates this significant disagreement between experiment and theory in absolute magnitude and in shape of the electron-density profiles. In an effort to resolve these differences above 71.0 km (233 000 ft), the effects of ambipolar diffusion were considered. Since the analytical model used a streamtube approach, the effects could not be handled directly; rather an ion diffusion correction factor was determined (ref. 9) which accounts for the reduction in the magnitude of the peak electron density. Unfortunately, no theoretical means is available for predicting the spreading of the electron-density profiles; conceptually, however, ambipolar diffusion should decrease the absolute magnitude of density and reduce its gradients. The theoretical peak electron density and the RAM C-I and RAM C-II envelopes of time-averaged inferred densities from probe 8 are shown in figure 32. The RAM C-II data should provide a better comparison with the "pure air" plasma calculations because the RAM C-II beryllium nose cap minimized flow-field contamination down to an altitude of 56.4 km (185 000 ft). At 85.3 km (280 000 ft) the inviscid calculation of peak electron density must be reduced by approximately two decades because of the ambipolar diffusion correction factor. This correction goes to zero near 70.1 km (230 000 ft), and below this altitude both the inviscid calculations and the inviscid calculations corrected for boundary layer yield identical results and according to reference 9 are believed to be correct. The good agreement between the inviscid calculations corrected for ambipolar diffusion and the experimental measurements above 70.1 km supports the hypothesis that ambipolar diffusion is a principal mechanism for shaping the high-altitude electron-density profiles. The RAM C-II electron densities from the inviscid calculations corrected for boundary layer, the microwave reflectometer measurements, and the electrostatic probe measurements are given for different body locations in figure 33. Although both the experimental and theoretical curves show a leveling of the electron density below 70.1 km (230 000 ft), the experimental values are greater. The electrostatic probe data envelope shown in the figure includes only those data that are below the 1366 K (2000° F) critical temperature. Although the probe data might be suspect below 70.1 km because of aerodynamic heating, the microwave reflectometer technique does not suffer from this effect. #### CONCLUSIONS Unique high-altitude electrostatic probe measurements have been made on the aft section of two high-velocity reentry spacecraft. Good agreement between the two RAM-C flight probe experiments with strong correlative data from microwave reflectometer and VHF antenna measurements support the following conclusions: - 1. High-altitude (above 70 km (230 000 ft) for RAM-C configurations) calculations of electron-density profiles using an inviscid streamtube approach corrected for boundary layer are inadequate and modifications including ambipolar diffusion effects are necessary. - 2. Increases in ionization due to phenolic-graphite ablation products in the aft-flow-field boundary layer were no greater than a factor of two over an
altitude range of 56.4 to 82.3 km (185 000 to 270 000 ft). - 3. Small angle-of-attack motions produce significant peak-to-peak density fluctuations in the aft parts of the flow field. These variations in electron-density profiles can be useful in qualitatively indicating vehicle angle of attack in the high altitudes where accelerometer data are limited. - 4. The use of water addition into the flow field as a plasma alleviant is effective in reducing the electron density in the flow field and in alleviating radio blackout. Langley Research Center, National Aeronautics and Space Administration, Hampton, Va., December 20, 1971. #### APPENDIX A #### ELECTROSTATIC PROBE THEORY Simplicity makes the electrostatic probe attractive for plasma diagnostics; however, the theoretical interpretation of its current-voltage characteristics is extremely complicated. The difficulty stems from the fact that a probe represents a boundary to a plasma and near this boundary the equations which describe the motion of the charged particles change their character. At the surface of the probe, one polarity of charged particle is collected while the other is repelled; thus, a charge separation region or sheath is created where ion and electron densities differ and hence where large electric fields can be present. A fundamental result of the original theoretical interpretation of probes by Langmuir (ref. 19) is that under many experimental conditions, the sheath may be considered as a thin layer near the probe surface and the plasma appears to be fieldfree and electrically neutral up to the edge of this well-defined boundary. In recent years considerable progress has been made by the application of computer numerical integration techniques to the analysis of the collection of charged particles in the collisionless case for cylindrical and spherical probes in nonflowing plasmas (refs. 20 to 24). Thus, the artifice of a sheath boundary has been eliminated and the continuous transition from probe surface to ambient plasma is adequately described. Currently, the most realistic collisionless or free-molecular probe theory has been developed by Laframboise (ref. 20) who used the analytical model of Bernstein and Rabinowitz (ref. 21) to calculate the entire probe characteristic for both cylindrical and spherical probes in a Maxwellian plasma at rest. His plasma model consists of positive and negative species of charged particles, each having a Maxwellian velocity distribution with its own characteristic temperature. The analysis was based on the collisionless Boltzmann or Vlasov equations for two species coupled by Poisson's equation for the electric field. These equations are valid for only those conditions where binary collisions are negligible; that is, the collision mean free path is much greater than the probe radius and the plasma Debye length. The electric field, consistent with Poisson's equation, is therefore the dominant influence on the motion of the charged particles. #### Flowing Plasmas The theory for interpreting the response of an electrostatic probe in a plasma with directed flow is considerably more primitive than the classical probe theory just discussed. The available theories for including the effects of flow are oversimplified and their experimental verification are for the most part cursory. Fortunately, positive ion collection with an "infinitely long" cylindrical probe (long enough for end effects to be neglected) alined parallel to the flow can be interpreted by use of the theory of Laframboise for nonflowing plasmas. Also, for most experimental conditions, this theory should be applicable for electron collection with any probe orientation because the random velocity of electrons is usually large compared with the directed velocity of the flowing plasma. However, this theory is not applicable for the interpretation of positive ion collection with a cylindrical probe of arbitrary orientation in a flowing plasma. In the following sections, an interpretation for cylindrical probes under these conditions by Scharfman (ref. 12), based on the works of Hok et al. (ref. 14) and Smetana (ref. 15), is presented. #### Directed Flow Parallel to Probe The ion current part of a cylindrical electrostatic probe characteristic has been numerically evaluated by Hok et al. (ref. 14) over a large range of ion densities and electron temperatures for a nonflowing plasma which is also applicable to a plasma with the directed flow parallel to the axis of the probe. For the flowing plasma case, it is advantageous to use this theory because it can easily be modified to account for an arbitrary probe orientation. These results are shown graphically in figure 34 as the variation of the normalized current I_n with the normalized potential difference χ_p between the probe and the plasma for selected values of ratio γ of sheath radius a to probe radius R_p . The normalized current is the ratio of the current I_+ collected by a probe to the random ion current I_r . The random ion current is defined by Hok et al. to be the product of the saturation ion current density and the area of the probe and is given by $$I_r = \frac{\text{nev}_{\pm}}{4} \left(2\pi R_p L \right)$$ where n electron density or ion density e magnitude of electronic charge R_p probe radius L probe length v₊ velocity of ions entering sheath The velocity v₊ is defined to be $$v_{+} = \sqrt{\frac{8kT_{e}}{\pi M}}$$ (A1) where k Boltzmann's constant T_e mean electron temperature M ion mass It is to be noted that in equation (A1) the electron temperature T_e is used rather than the ion temperature. This departure from the classical definition for the mean thermal speed is the result of incomplete shielding of the probe sheath. Thus, a total potential drop of order of magnitude kT_e exists in the plasma and accelerates the ions into the probe sheath (ref. 25). The normalized potential difference χ_p between the probe and the plasma is a dimensionless parameter defined as $$\chi_{\mathbf{p}} = \frac{\mathbf{e} \left(\mathbf{V} - \mathbf{V}_{\infty} \right)}{\mathbf{k} \mathbf{T}_{\mathbf{p}}}$$ where V probe potential V_{∞} plasma potential Before Hok's results (fig. 34) can be used to interpret experimental probe data, the ratio γ of sheath to probe radii must be known. The ion sheath radius a is defined as $$a = R_p + d_s$$ where d_s is the sheath thickness. For a planar probe geometry, the sheath thickness varies directly as the probe potential and inversely as the ion density and is given by $$d_{s} = \lambda_{D} \chi_{p}^{3/4}$$ where $\lambda_{\mbox{\scriptsize D}}$ is the Debye length and is defined as $$\lambda_{\rm D} = \left(\frac{\epsilon_{\rm O} k T_{\rm e}}{{\rm e}^2 {\rm n}}\right)^{1/2}$$ where ϵ_0 is the permittivity of free space. The approximation of a planar solution for sheath thickness is applicable to cylindrical probes only when the sheath thickness is small compared with the probe radius. When this is not the case, the ratio γ of the sheath to probe radius may be obtained from an inverted form of the Child-Langmuir 3/2-power law for space-charge-limited current flow. This relation has been derived by Hok for cylindrical probes and is plotted in figure 35 as γ - 1 against Θ where Θ is defined as $$\Theta = \frac{L}{I_{+}R_{p}} \left(V' + \frac{5kT_{e}}{e} \right)^{3/2} \left(1 + \frac{2.66}{\sqrt{\chi_{p}}} \right)$$ (A2) and I₊ measured probe current V' absolute magnitude of applied probe bias To give more physical significance to the current collection curves shown in figure 34, the following asymptotic cases are given: Case I; thin sheath, $\gamma \approx 1$; $\chi_{\rm p} < -1$: $$I_{+} = 2\pi R_{p} L J_{i}$$ (A3) where J_i is the saturation positive ion current density for a collisionless Maxwellian plasma at rest and is given approximately by Bohm et al. (ref. 26) as $$J_{i} = 0.4 \text{nev}_{+} \tag{A4}$$ Note that equation (A3) is independent of the applied probe bias. Case II; moderate to thick sheaths, $\gamma > 1$; large negative probe bias, $\chi_p << -\gamma$: $$I_{+} = \gamma 2\pi R_{p} L J_{i} \tag{A5}$$ This current varies directly as the applied bias because of γ . Case III; extremely thick sheaths, $\gamma >> |\chi_p|$; moderate negative probe bias, $\chi_p < -2$: $$I_{+} = \frac{2}{\sqrt{\pi}} \sqrt{\chi_{p} + 1} \left(2\pi R_{p} L J_{i} \right) \tag{A6}$$ In this region the current is approximately proportional to the square root of applied probe bias. #### Directed Flow Normal to Probe The effect of a normally directed ion flux (ions/unit area) on the current collected by free molecular cylindrical probes has been analyzed by several investigators. (See refs. 12, 15, 27, and 28.) If it is assumed that the flow does not distort the form of the ion sheath around the probe, the current density is the result of a superposition of random and directed ion fluxes (ref. 12). This effect is illustrated by figure 36, a curve of the normalized current I_n collected by a cylindrical probe not alined with the flow plotted against the ion speed ratio S. The speed ratio is defined as the normal component v_f of the flow velocity v_{flow} divided by the random thermal velocity v_+ $$S = \frac{v_f}{v_+} \tag{A7}$$ In figure 36 there are two asymptotes shown as dashed lines. The horizontal asymptote represents the value of current collected by a thin-sheathed ($\gamma \approx 1$) probe in a nonflowing plasma and is equal to the random current I_r or to a normalized current of unity. The other asymptote represents the superposition of the random current I_r and a directed current I_d . The directed current is $$I_{d} = nev_{f}(2R_{p}L) = \rho v_{f}A$$ (A8) where ρ charge density A projected area of probe When the normal component of the flow velocity is small (S << 1), the probe current is approximately that collected in a nonflowing plasma.
For larger values of the normal component of flow velocity, that is, S > 3, the current collected by the probe approaches the value given in equation (A8). When the ion sheath is not thin, that is, $\gamma > 1$, the problem is more complicated because the ability of the relatively weak electrostatic potential field around the probe to capture ions with increased inertial energy due to the flow is reduced. This problem was treated by Smetana (ref. 15) and the results are shown in figure 37. Scharfman (ref. 12) gives the following qualitative explanation of Smetana's results: For the nonflowing plasma case (S = 0) with low values of applied bias $(\chi_p > -1)$ and a large sheath thickness ($\gamma >> 1$), the attraction of the probe's potential field is weak; consequently, most of the ions that enter the sheath orbit past the probe and are not collected. By using simple orbital theory, the radius r_a at which particles will just be collected is $$r_a = R_p \left(1 + \frac{V}{V_o} \right)^{1/2}$$ where V probe potential V_{O} initial energy of ion entering sheath, kT_{e}/e Thus, the current is proportional to the flux (ions/unit area) entering the sheath at the radius r_a and is proportionally given as $$I_{+} \propto nV_{O}^{1/2}R_{p}\left(1 + \frac{V}{V_{O}}\right)^{1/2}$$ In the limit of large applied potential $(\chi_p << -1)$, $$I_{+} \propto v^{1/2} R_{p}$$ When a directed velocity is included (S > 0), the flux is proportional to ${\rm SV_0}^{1/2}$ and the capture radius becomes $$r_a = R_p \left(1 + \frac{V}{S^2 V_o} \right)^{1/2}$$ Thus, the effective capture radius for ions decreases while the flux increases. Therefore, $$I_{+} \propto nSV_{O}^{1/2}R_{p}\left(1 + \frac{V}{S^{2}V_{O}}\right)^{1/2}$$ In the limit of large applied potentials $(\chi_p << -S^2)$, this relationship reduces to the same value as when S=0; that is, $$I_+ \propto V^{1/2} R_D$$ In the limit of large directed velocity (S >> 1), I_n approaches S in value, and the current I_{\perp} is approximately given by equation (A8). With this understanding of current collection under directed velocity conditions and with the asymptotic solutions for S=0 and S>>1, the works of Hok and Smetana can be combined by a transformation of the coordinates of figure 34. This result from Scharfman is replotted in figure 38 as the variation of R with H where $$R = \frac{I_n}{\left(1 + S^2\right)^{1/2}} \tag{A9}$$ $$H = \frac{\chi_p}{1 + S^2} \tag{A10}$$ where R modified normalized probe current H ratio of modified potential energy to kinetic energy The results presented in figure 38 can be readily used to infer positive ion density n by the following algorithm: - (1) Determine T_e - (2) Measure the probe current I_{\perp} at V' volts below floating potential - (3) Calculate the normalized probe to plasma potential $$\chi_{\mathbf{p}} = \left(\frac{\mathbf{eV'}}{\mathbf{kT_e}}\right) + 5 \pm 0.5 \tag{A11}$$ - (4) Calculate Θ by use of equation (A2) - (5) Obtain the appropriate value of γ from figure 35 - (6) Calculate v_{\perp} by using equation (A1) - (7) Calculate S by using equation (A7) - (8) Calculate H by using equation (A10) - (9) Obtain the appropriate value of R from figure 38 - (10) Calculate the positive ion density from $$n = \frac{I_{+}}{\sqrt{1 + S^{2}}R\sqrt{\pi}ev_{+}R_{p}L}$$ #### Interpretation of RAM-C Fixed-Bias Electrostatic Probe Data The configuration of the RAM-C electrostatic probe is shown in figure 6(b). In relation to the flowing plasma, each ion collector appears to be a cylindrical wire 0.0254 cm (0.010 in.) in diameter and 0.5385 cm (0.212 in.) long, which is inclined at an angle of 45° with respect to the plasma flow. To illustrate the data-reduction procedure, a sample calculation is presented. #### Sample Calculation The following factors are given in the sample calculation: | Altitude, km (ft) | |--| | Ion collector | | Potential of probe below floating potential, V', volts 5 | | Temperature, T, K | | Flow velocity, v_{flow} , km/sec (ft/sec) | | Angle between flow velocity and probe axis, θ , deg | | Ion mass (NO+), M, g | | Measured current, I ₊ , μA | | Probe length, L, cm (in.) | | Probe radius, R_p , cm (in.) 0.0127 (0.005) | | Boltzmann constant, k, J/K 1.38044 \times 10-23 | | Electronic charge, e, coulombs | For an altitude of 76.2 km (250 000 ft) and ion collector 8, the temperature was calculated to be 7500 K. The electron temperature is assumed to be equal to the local gas temperature. A plot of gas temperature as a function of altitude for the ion collector locations is shown in figure 39. These temperature data, as well as the flow velocity data given in figure 40, were generated by a nonequilibrium boundary-layer-corrected flow-field analysis of the RAM C-I trajectory. #### APPENDIX A - Concluded The first factor to be calculated is the normalized potential difference between the probe and the plasma by using equation (A11) $$\chi_{\mathbf{p}} = \frac{\mathbf{eV'}}{\mathbf{kT_{\mathbf{e}}}} + 5 = 12.69$$ Next, the ratio of ion sheath radius to probe radius γ is estimated by using figure 35 and equation (A2) $$\Theta = \frac{L}{I_{+}R_{p}} \left(V' + \frac{5kT_{e}}{e} \right)^{3/2} \left(1 + \frac{2.66}{\sqrt{\chi_{p}}} \right)$$ For a measured current of 50 μ A, the value of Θ is 3.51×10^7 volts $^{3/2}$ /ampere. The corresponding ratio of sheath radius to probe radius γ is 2.61. The modified normalized probe current R is now determined. Figure 38 is a plot of R as a function of the ratio of modified potential energy to kinetic energy H (eq. (A10)) which is defined as $$H = \frac{\chi_p}{1 + S^2}$$ The velocity of ions entering the sheath v_+ is calculated (eq. (A1)) to be $$v_{+} = \left(\frac{2kT_{e}}{M}\right)^{1/2} = 2.037 \times 10^{5} \text{ cm/sec}$$ The ion speed ratio S is (from eq. (A7)) $$S = \frac{v_f}{v_+} = \frac{v_{flow} \sin \theta}{v_+}$$ From equation (A7), S = 1.791 and thus the value of H is 3.015. The corresponding value of R is 1.93 from figure 38. Solving for the density n yields $$\rm n = \frac{I_+}{\sqrt{1 + S^2} R \sqrt{\pi} ev_+ R_p L} = 3.21 \times 10^{10} \ cm^{-3}$$ #### APPENDIX B # ELECTROSTATIC-PROBE AUTOMATIC DATA REDUCTION PROCEDURE AND LISTINGS By Lorraine F. Satchell Langley Research Center This appendix outlines the method for inferring electron density from telemetry data for the RAM-C flight experiments. The theoretical interpretation used was that of Scharfman (based on the works of Smetana and Hok) as presented in appendix A. A flow chart that illustrates the data-reduction procedure follows: Telemetry signals containing the electrostatic probe data were recorded by ground receiving stations on magnetic tape. These data were in an analog—frequency-modulation form which consisted of subcarrier oscillator frequency deviations as a function of logarithmic amplifier output voltage. The format for this commutated probe data is given in figure 10. An analog-to-digital transcription made from magnetic telemetry tape data was converted to engineering units to be used as inputs to the probe theory computer program named LPROBE. LPROBE also required, as input data, theoretical flow-field velocities and electron temperatures for each probe location, as functions of elapsed flight time and altitude, and preflight probe-electronic system calibration. Sufficient points from curves of these input data were tabulated and a second-order interpolation using FTLUP, a table look-up subroutine, provided the desired accuracy. LPROBE was written in Fortran IV language for the Control Data 6000 series computer. The formats for the program inputs were flight time (FLTIME), delta time (DELTAT), synchronization code (ISYNC), and 24 channels of voltage and 24 channels of current. DNSTY was a subroutine with all tabular data listed internally. LPROBE provided the data in the call sequence and DNSTY computed the electron density. The outputs of LPROBE were CALCOMP plots (figs. 13, 14, 17, and 18) and/or tabulations of electron density (electrons/cm³) as a function of time for each probe. Presented in this appendix are: a listing of the program, logarithmic amplifier calibrates (output voltage as a function of input current in microamperes) for the two flights, tables of computed gas temperatures (for altitudes in thousands of feet), flow velocity calculations (as a function of time) for each of the probes, and tabulations of computed electron density as a function of time for each of the probes for both RAM C-II and RAM C-II. ``` *CALL SEQUENCE FOR SUBROUTINE DNSTY* C LFS 250 LFS 260 TE=ELECTREN TEMPERATURE, DEGREES KELVIN(COMPUTED FROM TABLES VS. TIME) LFS С 270 280 TI=ICN TEMPERATURE(NOT USED-DUMMY IN CALL STATEMENT) LFS 290 LFS 300 POMILL(DIAMETER OF PROBE)=10.0 MILS LFS 310 LFS 320 PLMILL(LENGTH OF PROBE)=212.0 MILLS LFS C 330 LFS 34C AV POTENTIAL CC IS MEASURED WITH RESPECT TO PLASMA POTENTIAL. С LFS 350 С LFS 360 CC ICN SATURATION CURRENT, MICRCAMPS (COMPUTER VALUES). LFS 37C LFS 380 € AMITICION MASSI=28.0 AMU LFS 390 LFS 400 ANG (OPTENTATION ANGLE OF PROBE) = 45.0 DEGREES CR .78539816 RADIANS C LFS 41C LFS 420 FLOVEL(FLOW-VELOCITY) IN M/SEC. (CCMPUTED FRCM TABLES VS. TIME) LFS 430 LFS 44C AN(FLECTRON DENSITY) COMPUTED USING SUBROUTINE DNSTY. LFS C 45C LFS 460 THERE ARE 8 PROBES-EACH SAMPLES THE DATA 3 TIMES PER FLIGHT TIME. LFS 470 SEE FIGURE 11 AND TABLE BELOW. LFS 480 DATA(1,09,17) ARE PROBE 1 (FTLUP USES CORRECTED TIME. TEMP1 AND VF 1)LFS С 490 DATA(2,10,18) ARE PROBE 2 (FTLUP USFS CORRECTED TIME, TEMP2 AND VF 500 DATA(3,11,19) ARE PROBE 3 (FTLUP USES CORRECTED TIME, TEMP3 AND VE 510 311 FS DATA(4,12,20) ARE PROBE 4 (FTLUP USES CORRECTED TIME, TEMP4 AND VF 41LFS 520 DATA(5,13,21) ARE PROBE 5 (FTLUP USES CORRECTED TIME, TEMP5 AND VF 5)LFS 530 LETLUP USES CORRECTED TIME, TEMP6 AND VE DATA(6,14,22) ARE PRUBE 6 540 DATA(7,15,23) ARE PROBE 7
(FTLUP USES CORRECTED TIME, TEMP7 AND VF 7)LFS 550 DATA(8,16,24) ARE PROBE 8 (FTLUP USES CORRECTED TIME, TEMP8 AND VF BILFS 560 LFS 570 FEAL N3(600) LFS 580 C LFS 590 ``` ``` CIMENSICN VCLTS(50), CUR(50), TIMEA(40), ALTA(40), TEMP(40,8), TIMEB(40LFS 600 1),ALTB(4C),VF(40,8),FLTIME(200),VOLTAGE(200,24),CURRENT(200,24), 610 LFS 11SYNC(200), DELTAT(200), TIME(60C), CLRR(60C) 620 C LFS 630 EQUIVALENCE (TIMEA, TIMEB), (ALTA, ALTB) LFS 640 С LFS 650 C INITIALIZE PLOTTER. LFS 660 CALL CALCOMP LFS 670 C LFS 680 USE PAPER 300 - SET PEN ON RIGHT MARGIN - SET ORIGIN. С LFS 690 LFS CALL CALPLT(C.O.1.0,-3) 700 c LFS 710 C. PRINT CONSTANTS. LFS 720 SIZE=•1 LFS 73C SIZED2=SIZE/2.0 LFS 740 h=(6./7.)*SIZE LFS 750 SIZED=SIZE+SIZED2 LFS 760 LFS 770 LFS EATA CONSTANTS & CAYOFP=K/FPSILON C 780 PDMILL=10.0 LFS 790 PLMILL=212.0 LFS 800 LFS AMII=28.CC 810 ANG=. 78535816 LFS 820 E=5.0 LFS 830 CAYDEP=.0C0138054/1.6C210 LFS 840 C LES 850 PEAD, STORE AND WRITE VOLTAGE VS. CURRENT FROM LOG-AMP CURVES (814) С LFS 860 С RAM C-I AND 813 RAM C-III(DYNAMIC INPUT-OUTPUT CURVES) LFS 870 WRITE(6,1) LFS 880 1 FORMAT(*1 VOLTAGE CURRENT LOG-AMP 814*/) LFS 89C LFS CC 10 I=1,50 900 READ(5,3) VOLTS(I), CUR(I) LFS 910 3 FCRMAT(2F10.3) LES 920 WRITE(6,3) VOLTS(I), CUR(I) LFS 930 10 CONTINUE LFS 940 C LFS 950 C PEAD, STORE AND WRITE TIME AND ALTITUDE VS. TEMPERATURE (1 THRU 8) LFS 96C С (COMPUTED ELECTRON OR GAS TEMPERATURE AS A FUNCTION OF ALTITUDE LFS 970 C FOR ELECTROSTATIC PROBE LOCATIONS ON RAM C-I AND RAM C-II) LFS 98C 990 C LES LES 1000 WRITE(6,11) ALT TEMP1 TEMP2 TEMP3 TEMLFS 1010 11 FORMAT(*1 TIME TEMP7 TEMP8*/) 1F4 TEMP6 LFS 1020 CO 20 I=1,40 LFS 1030 LES 1040 READ(5,12)TIMEA(I), ALTA(I), (TEMP(I,J), J=1,8) 12 FORMAT(2F8.1,8F8.3) LFS 1050 WRITE (6,13) TIMEA(I), ALTA(I), (TEMP(I,J), J=1,8) LFS 1060 LFS 1070 13 FORMAT(2F10.1,8F10.3) LFS 1080 20 CCNTINUE C LFS 1090 READ, STORE AND WRITE TIME AND ALTITUDE VS. FLOW VELOCITY (1 THRU 8LFS 1100 LFS 1110 C)(COMPUTED VELOCITY AS A FUNCTION OF ALTITUDE). WRITE (6,21) LFS 1120 VF1 VF3 VLFS 1130 21 FORMAT(*1 TIME VF2 ALT VF5 VF7 VF8*/) 1F4 VF₆ LFS 1140 CO 30 I=1,40 LFS 1150 READ(5,12)TIMEB(I), ALTB(I), (VF(I,J), J=1,8) LFS 116C wRITE(6,13)TIMEB(I),ALTB(I),(VF(I,J),J=1,8) LFS 1170 30 CENTINUE LFS 1180 С LFS 1190 READ AND STORE DATA FROM FLIGHTS (RAM C-I REEL 214009 AND RAM CII LES 1200 C. REEL 3140261. LFS 1210 I = 1 LFS 1220 69 READ(8) FLTIME(1), ISYNC(1), DELTAT(1), (VOLTAGE(1, J), J=1,24), (CURRENTLFS 1230 1(I,J),J=1,24 LFS 1240 IF(EOF,8)75,65 LFS 1250 65 I=I+1 LFS 1260 GO TO 60 LFS 1270 ``` ``` LFS 1280 75 REWIND 8 LFS 1290 LFS 1300 CALL EVICT(5LTAPE8) IPTS=I LFS 1310 C COMPUTE DATA BY PROBES LFS 1320 C LFS 1330 CO 300 IPROBE=1,8 LFS 1340 C C FEADINGS FOR DATA LFS 1350 LFS 1360 NPTS=0 WRITE (6.76) LFS 1370 ION MASLES 1380 76 FORMAT(*1PROBE DIMETER=10 MILS PROBE LENGTH=212 MILS ORIENTATION ANGLE=.78539816 RACIANS*/) LFS 1390 15=28 AMU WRITE(6.77) LFS 1400 77 FORMAT (*OPROBE FL TIME SYNC VOLTAGE CURRENT ALTITUDE TEMPERLES 1410 TIME ELECTRON DNSTY LOG(N3)*)LFS 1420 1ATURE F-VELOCITY ΑV IF(IPROBE.EQ.1)GO TO 81 LFS 1430 LFS 1440 IF(IPROBE.EQ.21GO TO 82 LFS 1450 IF(IPROBE.EQ.3)GG TO 83 LFS 1460 IF(IPROBE.EQ.4)GO TO 84 IF(IPROBE.EQ.5)GO TO 85 LFS 1470 IF(IPFOBE.EQ.6)GO TO 85 LFS 1480 IF(IPROBE.EQ.7)GO TO 87 LFS 1490 LFS 1500 LFS 1510 IF(IPROBE.EQ.8)GO TO 88 81 M1=1 LFS 1520 M2=17 LFS 153C NC=-11 LFS 1540 GO TO 90 82 F1=2 LFS 1550 M2=18 LFS 1560 LFS 1570 NC = -12 GO TO 90 LFS 1580 93 M1=3 LFS 159C LFS 1600 M2=19 LFS 1610 NO=-13 GC TO 90 LFS 1620 84 M1=4 LFS 1630 M2=20 LFS 1640 LFS 1650 NC=-14 LFS 1660 GB TO 90 LFS 1670 35 M1=5 LFS 1680 M2 = 21 LFS 1690 NO = -15 CC TO 90 LFS 1700 LFS 1710 LFS 1720 36 M1=6 M2=22 LFS 1730 NO=-16 GD TO 90 LFS 1740 87 M1=7 LFS 1750 LFS 1760 LFS 1770 M2=23 NO=-17 LFS 1780 GC TO 90 LFS 1790 88 M1=8 LFS 1800 M2=24 LFS 1810 81 - = 0.4 LFS 1820 С TI IS A DUMMY IN CALL STATEMENT TO SUBROUTINE COSTY. LFS 1830 C 0.1=1T C6 LFS 1840 LFS 1850 IS=1 LFS 1860 CC 100 I=1, IPTS LFS 1870 LFS 1880 IF(ISYNC(I).EQ.1)GO TO 10C IF(ISYNC(I).EQ.2)GO TO 100 LFS 1890 CO 98 J=M1,M2,8 LFS 1900 JJ=J IF(VOLTAGE(I, J).LT.(-.080))GC TO 98 LFS 1910 IF(VOLTAGE(I, J).GT.(5.264))GO TO 98 LFS 1920 ``` ``` IF(CURRENT(I,J).LT.(.100))GO TO 98 LFS 1930 LFS 1940 IF(CURRENT(I, J).GT.(1000.))GO TO 98 IF(LEGVAR(VOLTAGE(I,J)))98,91,98 LFS 1950 91 IF(LEGVAR(CURRENT(I,J)))98,92,98 LFS 1960 92 ATIME=FLTIME(I)+(FLOAT(JJ))*DELTAT(I) LFS 1970 LFS 1980 LFS 1990 IF(ATIME.GT.(406.000))GD TO 58 NPTS=NPTS+1 TIME(NPTS)=ATIME LFS 2000 CALL FTLUP(ATIME, ALT, 2, 40, TIMEB, ALTB) LFS 2010 ALT=ALT+1000. LFS 2020 LFS 2030 LFS 2040 CC≈CURRENT(I,J) CURR(NPTS)=CURRENT(I,J) CALL FILUP(ATIME, TE, 2, 40, TIMEA, TEMP(1, IPPCBE)) LFS 2050 TE=TE*1000. LFS 2060 LFS 2070 AV=E+5.0*CAYQEP*TE CALL FTLUP(ATIME, FLOVEL, 2, 40, TIMEB, VF(1, IPROBE)) LFS 2080 LFS 2090 FLCVEL=FLCVEL*1000. CALL DASTY(TE,TI,PDMILL,PLMILL,CC,AV,AMII,ANG,FLOVEL,AN) LFS 2100 N3(NPTS)=ALOG10(AN) LFS 2110 WRITE(6,96) I PROBE, J, FLT IME(I), ISYNC(I), VCL TAGE(I, J), CC, ALT, TE, LFS 2120 LFS 2130 1FLOVEL, AV, TIME(NPTS), AN, N3(NPTS) 96 FORMAT(12,14,F9.3,15,2F10.3,F10.1,2F13.3,F10.3,F8.3,E16.6,F12.6) LFS 2140 KPTS=NPTS LFS 2150 IF(MOC(NPTS,40))58,57,98 LFS 2160 97 WRITE (6,76) LFS 2170 LFS 2180 hRITE(6,77) LFS 2190 93 CCNTINUE 100 CONTINUE LFS 2200 LFS 2210 LFS 2220 NPTS=KPTS C SCALE CATA TO BE PLOTTED C LFS 2230 DO 110 I=1,NPTS LFS 2240 TIME(I)=TIME(I)-386.C LFS 2250 LFS 2260 LFS 2270 N3(I)=(N3(I)-7.0)*2.5 CURR(I)=(1.0+ALOG10(CURR(I)))*2.5 LFS 2280 110 CCATINUE C LFS 2290 PLOT TIME VS. ELECTRON DENSITY (N3) AND TIME VS. CURRENT (CURR). LFS 2300 C DO 200 IPLOT=1,2 LFS 2310 C LFS 2320 LFS 2330 C CRAW X-AXIS AND LOGRID CALL AXES(0.0,0.0,0.0,21.0,386.,1.0,1.0,.5,9HTIME,SEC.,.15,-9) LFS 2340 LFS 2350 CALL LOGRID(21.0,2.5,-1,6,0.0,1.0,.5,.2) С LFS 2360 LFS 2370 GENERAL IDENTIFICATION OF Y-AXIS € CALL CALPLT(0.0,15.0,2) LFS 2380 CALL CALPLT(C.O,O.O.3) LFS 2390 LFS 2400 CALL NOTATE(-.3,0.0,SIZE,6HPROBE ,SU.0,6) NPROBE = IPROBE LFS 2410 LFS 2420 XPROBE=NPROBE CALL NUMBER(-.3,(0.0+(5.0*W)),SIZE,XPROBE,90.0,-1) LFS 2430 LFS 2440 CALL NCTATE(-.75,0.,SIZE,7HRAM C-A,90.0,7) IF(IPLOT.EQ.2)GO TO 140 LFS 2450 CALL NCTATE(-.2,6.5,.15,8HELECTRON,90.0,8) LFS 2460 CALL NOTATE(-.2,7.7,.15,7HDENSITY,90.0,7) LFS 2470 С LFS 2480 C. TIME VS. N3 LFS 2490 LFS 2500 LFS 2510 DO 120 I=1.NPTS CALL FNTPLT(TIME(I),N3(I),N0,IS) 12) CONTINUE LFS 2520 GC TO 190 LFS 2530 LFS 2540 C C TIME VS. CURRENT LFS 2550 140 CALL NCTATE(-.2,7.1,.15,7HCURRENT,90.0,7) LFS 2560 CO 180 [=1,NPTS LFS 2570 CALL PNTPLT(TIME(II, CURR(I), NO, IS) LFS 2580 130 CONTINUE LFS 2590 C LFS 2600 ``` ``` MOVE TO NEW PLOTTING AREA C. LFS 2610 LFS 2620 193 CALL CALPET(24.0,0.0,-3) LFS 2630 LFS 2640 200 CONTINUE CLEAR CORE FOR NEXT PROBE. LFS 2650 LFS 2660 DC 250 I=1,NPTS LFS 2670 TIME(1)=0.0 N3(I)=0.0 LFS 2680 LFS 2690 CURR(I)=0.0 250 CCNTINUE LFS 2700 LFS 2710 300 CONTINUE LFS 2720 C PELEASE PLOTTER AND STOP. LFS 2730 CALL CALPLT(0.0,C.0,999) LFS 2740 STCP LFS 2750 LFS 2760 END SUBROUTINE DNSTY(TE, TI, PDMILL, PLMILL, CC, AV, AMII, ANG, FLOVEL, AN) LFS 2770 DIMENSION B(6),C(6),EIF(9) LFS 2780 LFS 2790 CIMENSION D(9), E1P5(9), E2(9), E3(9), E5(9), F1C(9), F2O(9), E5O(9) CIMENSION G(6) ,H(8) LFS 2800 EATA 8/5.2,6.,7.,8.,9.,10./ LFS 2810 ΓΑΤΑ C/-1.,-.61,-.0926,.463,1.C83,1.786/ LFS 2820 LFS 2830 CATA D/-1.,-.5,C.,.5,1.,1.5,2.,2.5,3./ DATA E1P5/.031,.056,.136,6*.175/ LES 2840 CATA E2/.031,.070,.160,.253,5*.300/ LFS 2850 ΠΑΤΑ Ε3/•031.•C74.•171.•316.•428.4*•475/ LFS 2860 EATA E5/.031..C74..191..35..521..654.3*.7/ LFS 2870 EATA E10/.031,.074,.191,.37,.58,.755,.919,.988,1./ LFS 2880 [ATA 520/.031,.074,.191,.37,.58,.802,1.04,1.19,1.29/ LFS 2890 CATA E50/.C31,.C74,.191,.37,.58,.81,1.05,1.28,1.32/ LFS 290C EATA EIF/.031,.074,.191,.37,.58,.81,1.06,1.30,1.55/ LFS 2910 CATA G/.175,.300,.475,.7,1.,1.3,1.7,10./ LFS 2920 FL=PLMILL *2.54E-5 LFS 2930 1 AC=ABS(CC) *1. E-6 LFS 2940 C PR=PDMILL*2.54E-5/2. $AMI=AMII*1.672E-27 LFS 2950 FR=.5*PDMILL*2.54E-5 $AMI=AMII*1.672E-27 LFS 2960 C A=AV*11604./TE LFS 2970 A=ABS(AV*11604./TE) LFS 2980 T=PL*AV**1.5*(1.+2.66/SQRT(A))/(PR*AC) LFS 2990 T=ALNG13(T) LFS 300C CALL DISCCT(T,T,B,C,C,-20,6,0,ANS) LFS 3010 2 AOR=1.+10.**ANS LFS 3020 3 VP=SQRT(2.*1.38E-23*TE/AMI) LFS 3030 4 S=FLOVEL*SIN(ANG)/VP LFS 3040 T=\Delta/(1.+S*S) LFS 3050 T=ALOGIO(T) LFS 3060 CALL DISCCT(T,T,D,E1P5,E1P5,-20,9,0,ANS1P5) LFS 3070 CALL DISCOT(T,T,D,E2 ,E2 ,-20,9,0,ANS2) LFS 3080 LFS 3090 LFS 3100 CALL DISCOT(T,T,D,E3 ,E3 ,-20,9,0,ANS3) CALL DISCOT(T,T,D,E5 ,E5 ,-20,9,0,ANS5) LFS 3110 CALL DISCOT(T,T,D,E10,E10,-20,9,0,ANS10) CALL DISCOT(T,T,D,E20,E20,-20,9,0,ANS20) LFS 3120 CALL DISCOT(T,T,D,E5C,E50,-2C,9,0,ANS50) LFS 3130 LFS 3140 LFS 3150 CALL DISCOT(T,T,D,EIF,EIF,-20,9,0,ANSIF) +(1) = ANS1P5 $ +(2) = ANS2 $ +(3) = ANS3 $ +(4) = ANS5 $ +(5) = ANS1D +(6) = ANS2C $ H(7) = ANS50 $ H(8) = ANSIF LFS 3160 ACF=ALOGIO(ACR) LFS 3170 CALL DISCET(AUR, AOR, G, H, H, -2C, 8, 0, ANS) LFS 3180 LFS 3190 LFS 3200 ANS=10. **ANS F = \Delta N S * SQRT(1.+S*S) AREA=6.28*PR*PL LFS 3210 5 AN=4.*AC/(AFFA*F*1.6E-19*SQRT(8.*1.38F-23*TE/(3.14159*AMI))) LFS 3220 AN=AN * 1 . E-6 LFS 3230 RETURN LFS 3240 LFS 3250 END ``` #### PRE-FLIGHT CALIBRATION OF LOGARITHMIC AMPLIFIERS | RAI | I C-I | RAN | C-II | |--|--|--
---| | Logarithmi
serial num | c amplifier,
ber 814 | Logarithm
serial nu | ic amplifier,
mber 813 | | VOLTAGE | CURRENT | VOLTAGE | CURRENT | | VOLTAGE 080060040 0-000055 -150305150850 1-055 1-210 1-300 1-480 1-600 1-710 1-800 1-990 2-100 2-385 2-500 2-385 2-800 3-365 3-263 3-263 3-263 3-263 3-300 3-460 3-600 3-750 3-900 4-200 4-325 | ## 814 . CURRENT - 100 - 570 - 695 - 754 - 830 - 922 - 1.020 - 1.085 - 1.175 - 1.260 - 1.340 - 1.480 - 1.625 - 1.725 - 1.980 - 2.185 - 2.450 - 2.695 - 3.030 - 3.400 - 3.890 - 4.810 - 5.220 - 6.010 - 7.640 - 10.490 - 13.800 - 20.700 - 24.900 - 28.600 - 33.400 - 36.600 - 49.500 - 58.900 - 65.500 - 65.500 - 65.500 - 65.500 - 62.700 | VOL TAGE 136 0.000 -090 -249 -495 -780 -925 1.115 1.375 1.540 1.725 1.825 1.950 2.025 2.140 2.215 2.310 2.375 2.500 2.6C5 2.6C5 2.651 2.715 2.765 2.810 2.865 2.905 2.940 2.980 3.040 3.130 3.175 3.230 3.3430 3.535 3.725 3.880 | CURRENT 100 298 370 450 580 720 790 1090 1090 1090 1090 1090 1090 1090 | | 4.400
4.530
4.600
4.700 | 134.500
133.000
162.500
226.000 | 4.030
4.110
4.170
4.185 | 79.000
90.000
100.000
132.000 | | 4.700
4.755
4.800
4.900
5.000
5.055
5.100
5.170
5.200 | 226.000
274.000
302.000
392.000
505.000
579.000
626.000
717.000 | | | | 5.264 | 1000.000 | 5.023 | 1000.000 | RAM C-I AND C-II COMPUTED GAS TEMPERATURES FOR PROBES 1 - 8 | TIME | ALT | TEMP1 | TEMP2 | TEMP3 | TEMP4 | TEMP5 | TEMP6 | TEMP7 | TEMP8 | |-------|----------------|-------|-------|-------|-------|--------|--------|---------|--------| | 386∙5 | 302 . 6 | 5.870 | 7.060 | 8.530 | 9.900 | 10.630 | 11.160 | 11.690 | 12.220 | | 387.0 | 299.2 | 5.760 | 7.030 | 8.500 | 9.850 | 10.570 | 11.120 | 11.670 | 12.220 | | 387.5 | 295.9 | 5.660 | 6.990 | 8.460 | 9.760 | 10.490 | 11.060 | 11.630 | 12.200 | | 388.0 | 292.6 | 5.570 | 6.970 | 8.400 | 9.66C | 10.420 | 10.990 | 11.560 | 12.130 | | 388.5 | 289.4 | 5.470 | 6.920 | 8.360 | 9.560 | 10.340 | 10.900 | 11.460 | 12.020 | | 389.0 | 286.1 | 5.380 | 6.880 | 8.270 | 9.450 | 10.250 | 10.800 | 11.350 | 11.900 | | 389.5 | 282.8 | 5.280 | 6.830 | 8.200 | 9.320 | 10.150 | 10.680 | 11.210 | 11.740 | | 390.0 | 279.6 | 5.190 | 6.780 | 8.120 | 9.190 | 10.030 | 10.570 | 11.110 | 11.650 | | 390.5 | 276.3 | 5.100 | 6.720 | 8.050 | 8.060 | 9.850 | 10.460 | 11.070 | 11.550 | | 391.0 | 273.0 | 5.000 | 6.660 | 7.940 | 8.900 | 9.650 | 10.250 | 1C.850 | 11.450 | | 391.5 | 269.8 | 4.900 | 6.580 | 7.840 | 8.750 | 9.440 | 10.050 | 10.660 | 11.270 | | 392.0 | 266.5 | 4.810 | 6.510 | 7.720 | 8.590 | 9. 22C | 9.760 | 10.300 | 10.840 | | 392.5 | 263.3 | 4.700 | 6.430 | 7.620 | 8.440 | 9.010 | 9.470 | 9.930 | 9.850 | | 393.0 | 260.0 | 4.600 | 6.330 | 7.49C | 8.26C | 8.770 | 9.120 | 9.100 | 8.920 | | 393.5 | 256.8 | 4.510 | 6.230 | 7.370 | 8.C7C | 8.530 | 8.800 | 8.610 | 8.380 | | 394.0 | 253.5 | 4.400 | 6.130 | 7.230 | 7.870 | 8.280 | 8.470 | 8.200 | 7.930 | | 394.5 | 250.3 | 4.310 | 6.030 | 7.080 | 7.69C | 8.050 | 8.180 | 7.870 | 7.580 | | 395.0 | 247.0 | 4.200 | 5.910 | 6.920 | 7.480 | 7.760 | 7.860 | 7.540 | 7.240 | | 395.5 | 243.7 | 4.100 | 5.780 | 6.750 | 7.260 | 7.500 | 7.540 | 7.230 | 6.920 | | 396.0 | 240.4 | 4.000 | 5.660 | 6.670 | 7.04C | 7.220 | 7.230 | 6.940 | 6.630 | | 396.5 | 237.1 | 3.890 | 5.520 | 6.380 | 6.810 | 6.930 | 6.920 | 6.670 | 6.360 | | 397.0 | 233.9 | 3.800 | 5.360 | 6.180 | 6.550 | 6.640 | 6.630 | 6.360 | 6.090 | | 397.5 | 230.6 | 3.680 | 5.200 | 5.970 | 6.300 | 6.340 | 6.350 | 6.150 | 5.840 | | 398.0 | 227.3 | 3.580 | 5.040 | 5.77C | 6.050 | 6.070 | 6.070 | 5.920 | 5.620 | | 398.5 | 224.1 | 3.480 | 4.860 | 5.530 | 5.77C | 5.820 | 5.820 | 5.710 | 5.400 | | 399.0 | 220.8 | 3.380 | 4.660 | 5.280 | 5.510 | 5.550 | 5.550 | 5.460 | 5.160 | | 399.5 | 217.6 | 3.270 | 4.460 | 5.020 | 5.230 | 5.300 | 5.300 | 5.240 | 4.940 | | 400.0 | 214.3 | 3.180 | 4.260 | 4.760 | 4.950 | 5.050 | 5.020 | 5.020 | 4.720 | | 400.5 | 211.0 | 3.070 | 4.020 | 4.460 | 4.660 | 4.770 | 4.800 | . 4.800 | 4.500 | | 401.0 | 207.7 | 2.970 | 3.770 | 4.140 | 4.370 | 4.490 | 4.560 | 4.560 | 4.280 | | 401.5 | 204.7 | 2.870 | 3.530 | 3.830 | 4.090 | 4.250 | 4.320 | 4.320 | 4.080 | | 402.0 | 201.1 | 2.760 | 3.250 | 3.480 | 3.720 | 3.980 | 4.110 | 4.110 | 3.860 | | 402.5 | 197.9 | 2.660 | 2.960 | 3.110 | 3.500 | 3.750 | 3.900 | 3.900 | 3.650 | | 403.0 | 194.6 | 2.550 | 2.640 | 2.73C | 3.210 | 3.480 | 3.690 | 3.690 | 3.430 | | 403.5 | 191.4 | 2.460 | 2.350 | 2.380 | 2.95C | 3.270 | 3.490 | 3.490 | 3.270 | | 404.0 | 188.1 | 2.350 | 1.990 | 1.990 | 2.660 | 3.030 | 3.290 | 3.290 | 3.030 | | 404.5 | 184.9 | 2.240 | 1.580 | 1.580 | 2.360 | 2.820 | 3.100 | 3.100 | 2.820 | | 405.0 | 181.6 | 2.140 | 1.250 | 1.250 | 2.100 | 2.610 | 2.910 | 2.910 | 2.590 | | 405.5 | 178.3 | 2.040 | •920 | •920 | 1.840 | 2.360 | 2.750 | 2.750 | 2.420 | | 406.0 | 175.1 | 1.940 | •610 | •610 | 1.600 | 2.120 | 2.570 | 2.570 | 2.200 | | TIME | ALT | VF1 | VF2 | VF3 | VF4 | VF 5 | VF6 | VF7 | VF8 | |-------|-------|-----------------------|-------|-------|-------|-------|-------|-------|--------| | 386.5 | 302.6 | •850 | 1.070 | 1.17C | 1.240 | 1.310 | 1.360 | 1.420 | 1.470 | | 387.0 | 299.2 | 845 | 1.110 | 1.230 | 1.340 | 1.440 | 1.520 | 1.640 | 1.720 | | 387.5 | 295.9 | 840 | 1.140 | 1.300 | 1.450 | 1.600 | 1.700 | 1.850 | 1.970 | | 388.0 | 292.6 | . 830 | 1.180 | 1.360 | 1.560 | 1.730 | 1.900 | 2.060 | 2.230 | | 388.5 | 289.4 | 825 | 1.200 | 1.430 | 1.66C | 1.880 | 2.060 | 2.275 | 2.450 | | 389.0 | 286.1 | . 820 | 1.240 | 1.500 | 1.77C | 2.010 | 2.230 | 2.470 | 2.660 | | 389.5 | 282.8 | •818 | 1.270 | 1.570 | 1.870 | 2.150 | 2.420 | 2.710 | 2.510 | | 390.0 | 279.6 | •815 | 1.300 | 1.630 | 1.980 | 2.310 | 2.620 | 2.920 | 3.160 | | 390.5 | 276.3 | .810 | 1.330 | 1.700 | 2.080 | 2.430 | 2.770 | 3.120 | 3.400 | | 391.0 | 273.0 | .808 | 1.370 | 1.770 | 2.190 | 2.570 | 2.970 | 3.350 | 3.590 | | 391.5 | 269.8 | 805 | 1.400 | 1.830 | 2.300 | 2.720 | 3.140 | 3.560 | 3.860 | | 392.0 | 266.5 | • 8C4 | 1.430 | 1.880 | 2.400 | 2.850 | 3.310 | 3.750 | 4.110 | | 392.5 | 263.3 | .810 | 1.460 | 1.980 | 2.500 | 2.980 | 3.450 | 3.940 | 4.350 | | 393.0 | 260.0 | •830 | 1.490 | 2.020 | 2.570 | 3.070 | 3.590 | 4.120 | 4.580 | | 393.5 | 256.8 | 850 | 1.520 | 2.070 | 2.630 | 3.160 | 3.720 | 4.300 | 4.780 | | 394.0 | 253.5 | .880 | 1.560 | 2.130 | 2.710 | 3.260 | 3.850 | 4.490 | 4.980 | | 394.5 | 250.3 | •910 | 1.630 | 2.200 | 2.790 | 3.370 | 3.990 | 4.660 | 5.180 | | 395.0 | 247.0 | •950 | 1.650 | 2.280 | 2.880 | 3.480 | 4.140 | 4.830 | 5.380 | | 395.5 | 243.7 | 1.000 | 1.720 | 2.370 | 2.980 | 3.610 | 4.280 | 4.990 | 5.530 | | 396.0 | 240.4 | 1.050 | 1.790 | 2.470 | 3.100 | 3.730 | 4.430 | 5.140 | 5.680 | | 396.5 | 237.1 | 1.120 | 1.830 | 2.570 | 3.220 | 3.880 | 4.590 | 5.300 | 5.840 | | 397.0 | 233.9 | 1.180 | 1.960 | 2.690 | 3.36C | 4.010 | 4.740 | 5.440 | 5.980 | | 397.5 | 230.6 | 1.260 | 2.070 | 2.830 | 3.510 | 4.180 | 4.890 | 5.590 | 6.120 | | 398.0 | 227.3 | 1.320 | 2.180 | 2.970 | 3.670 | 4.340 | 5.050 | 5.730 | 6.230 | | 398.5 | 224.1 | 1.410 | 2.300 | 3.130 | 3.840 | 4.520 | 5.210 | 5.860 | 6.350 | | 399.0 | 220.8 | 1.500 | 2.440 | 3.320 | 4.C30 | 4.720 | 5.370 | 5.990 | 6.460 | | 399.5 | 217.6 | 1.600 | 2.600 | 3.490 | 4.230 | 4.900 | 5.530 | 6.120 | 6.570 | | 400.0 | 214.3 | 1.700 | 2.760 | 3.700 | 4.46C | 5.090 | 5.700 | 6.230 | 6.660 | | 400.5 | 211.0 | 1.800 | 2.950 | 3.940 | 4.7CO | 5.310 | 5.860 | 6.340 | 6.750 | | 401.0 | 207.7 | 1.930 | 3.150 | 4.200 | 4.97C | 5.540 | 6.020 | 6.450 | 6.830 | | 401.5 | 204.4 | 2.050 | 3.370 | 4.480 | 5.250 | 5.770 | 6.190 | 6.550 | 6.920 | | 402.0 | 201.1 | 2.170 | 3.630 | 4.800 | 5.580 | 6.020 | 6.370 | 6.670 | 6.980 | | 402.5 | 157.9 | 2.290 | 3.780 | 5.020 | 5.76C | 6.150 | 6.480 | 6.750 | 7.020 | | 403.0 | 194.6 | 2.420 | 3.940 | 5.230 | 5.87C | 6.230 | 6.570 | 6.800 | 7. C50 | | 403.5 | 191.4 | 2.530 | 4.050 | 5.38C | 5.95C | 6.290 | 6.620 | 6.830 | 7.070 | | 404.0 | 188.1 | 2.640 | 4.160 | 5.49C | 6.C30 | 6.350 | 6.650 | 6.870 | 7.090 | | 404.5 | 184.9 | 2.760 | 4.250 | 5.570 | 6.090 | 6.400 | 6.680 | 6.890 | 7.100 | | 405.0 | 181.6 | 2.880 | 4.330 | 5.640 | 6.130 | 6.440 | 6.710 | 6.900 | 7.110 | | 405.5 | 178.3 | 2.990 | 4.110 | 5.700 | 6.170 | 6.480 | 6.730 | 6.910 | 7.110 | | 406.0 | 175.1 | 3.110 | 4.490 | 5.740 | 6.200 | 6.500 | 6.750 | 6.920 | 7.110 | | Authors | | | | | | | | | ELECTRON | 1 | | | | ELECTRON | ſ | | | | ELECTRON |
--|-----------|------------------------|----------------|----------------------|-----------|------------|------------------|----------------|--------------------------|-----|------------|------------------|----------------|----------------------|-----|-----------|---------|------------|----------------------| | Second Column C | | ALTITUDE, CU | PRENT, | DENSTITY. | FLAP! | EO | ALTITUDE | CURRENT, | DENSITY. | l | ELAFSED | ALTITUDE | , CURRENT, | DENSITY. | | | | . CURPENT, | DENSITY. | | Column C | | | A CLAMP S | PER CURIC | | | | MICROAMPS | | 1 | SECCHOS | | HICKUMHPS | PER CUBIC. | | | | MICKOWHAZ | PER CUBIC | | | 320003 | (*) | | CENTIMETER | | | (a) | | | 4 | | (4) | | CENTIPETER | | | (a) | | CENTIMETER | | | 385.785 | 280989 | +043 | 3.99E+C8 | 393.3 | 56 | | 3.920 | 2.79E+09 | 1 | 396.830 | 234997 | | 6.75E+CP | | 402,492 | 197950 | 175.000 | 2.756+11 | | | 389.829 | 280704 | .643 | | 393.4 | .01 | 257440 | | 8.445.09 | l | 396.875 | 234708 | 17-630 | 1-765+10 | | 402.518 | 197782 | 151.500 | 2-31E+11 | | | 389.525 | 260085 | .643 | 4.00E+08 | 393. | 52 | 257109 | 12.331 | 1.086+10 | ı | 356.527 | 234374 | 14.791 | 1.416.10 | | 402.589 | 197319 | 120.000 | 1.735+11 | | | 389.976 | 279753 | .643 | 4.00E.CB | 393.4 | 97 | 256818 | 11-686 | 1.01E+10 | 1 | 396-972 | 234081 | | 8.44E.09
2.29F.10 | | 402-615 | 197151 | | 1.61f+11
7.41f+08 | | | 390.047 | 279295 | .643 | 4. GOE + C 8 | 393.5 | 49 | 256481 | 12.438 | 1.09F+10 | l | 397.023 | 233748 | 29.934 | 3.47E+10 | | 1 402-685 | 196689 | 1.190 | 7.87E+0F | | | 390-C72 | 279128 | .493 | 3.C6E+CF | 1 393.5 | 94 | 256166 | 11.902 | 1.03E+10 | 1 | 397.068 | 233456
233287 | 29.583 | 3.42E+10 | | 402.711 | | | 6.48E+C8 | | | 390.143 | 278664 | .642 | 4.00E+C8 | 293.6 | 46 | 255847 | 9.819 | 8.13F + C9 | | 397.120 | 233117 | 32,323 | 3.83E+1C | | 402.783 | 196019 | 1.400 | 9.25F + CB | | | 390-215 | 278192 | | | 393.6 | 91 | 255550 | 7.754 | | | 397.191 | | 1.247 | | | | | | 8.725+08 | | | 390.266 | 277845 | .672 | 4,20E+C8 | 393.1 | 42 | 255213 | 9.472 | 7.798+69 | | 37.716 | 232484 | 1.215 | 8.15E+C8 | | 402.870 | 195389 | 94.000 | 1.278 + 11 | | | | | | | | | 254892 | 11.252 | 9.656+69 | | 197-286 | | 1.033 | 0.866+08 | | 402.931 | 195219 | 113.300 | 1.586.11 | | | 390.362 | 277211 | 707 | 4-39F+08 | 393.6 | 38 | 254550 | 13-180 | 1.18E+10 | | 397-311 | 23184€ | .940 | 6.24E.08 | | 402.976 | 194755 | 153,500 | 2. 30F - 11 | | | 390,407 | 276912 | . 780 | 4.90E+CE | 393-6 | 83 | 254262 | 12.969 | 1.425.10 | | 397.355 | 23155¢
231387 | 1.083
2.523 | | | 403.002 | | | 3.196+11 | | | 120.458 | 276575 | . 770 | 4. 84E • C8 | 393.9 | 75 | 253924 | 12.051 | 1-126-10 | [| 357.406 | 231218 | 1.853 | 1-26F+09 | | 403.071 | 194125 | 189,700 | 2.94E+11 | | No. 17 19 19 19 19 19 19 19 | 390.503 | | .850 | 5.36E+C8 | 393.5 | 08 | 253629 | 12.863 | 1-146+16 | l | 397.431 | 230751 | 11.703 | 1.C5F+10 | | 403.124 | 193794 | 138.000 | 2-01E+11 | | | 1 390.553 | 275946 | .803 | 5-C4F+(8) | 394.0 | 31 | 253296 | 12.969 | 1.10F+10 | | 357.503 | 23058C | 11.703 | 1.C5E+1C | | 403,149 | 193506 | 5.200 | 3.876.00 | | | 390.597 | 275658 | . 82) | 5.171.09 | 394.0 | 75 | 253306 | 13-180 | | | 357-574 | 230282 | 25.003 | | | 403-221 | | | 1.49E+C9 | | No. 10 | 330-760 | 275317 | - 923 | 5-17E+C8 | 394.1 | 27 | 252675 | 14.254 | 1.316.10 | | 367.599 | 229944 | 25.900 | 2.88E • 10 | | | 192909 | | 2-57F+C9 | | 100.000 100.0000 | 190-654 | 274847 | .863 | 5-62F+18 | | | 2523R7 | 34.159 | 3.99E+10
2.23E+10 | | 397.644 | 229648 | 28.503 | 3.26F+1C | | 403.317 | 192745 | 11.200 | 9.39F+09 | | 100.00 1 | 370.746 | 274677 | .893 | 5.62E+C8 | 394.7 | 22 | 252069 | 29.588 | 3.32E+10 | | 357.656 | 225307 | 29-201 | 3.366.10 | | 403.362 | 192292 | 109-300 | 1-495-11 | | | 393.791 | 274366 | • 567
• 963 | 6-CRE+CB | 394-2 | 91 | 251415 | 11.200 | 1.09E+10 | | 397.767 | 229008 | 30.253 | 3.526.10 | | 403.413 | 191961 | 129.000 | 1-016+11 | | No. 10 110
110 1 | 370.841 | 274C37 | 1.000 | 6.34E+C8 | 394.1 | 16 | 251487 | 13.000 | 1-16F+10 | | 397.793 | 228654 | 28.500 | 3+26E+10 | | 403.458 | 191671 | 160.000 | 2.37f+11 | | | 190.911 | | 1.206 | 7.69E+C8 | 394.3 | 87 | 251033 | 14.800 | 1.376+10 | | 397.864 | 228185 | 21.000 | 2-21E-10 | | 403.509 | 191339 | 175.000 | 2. e 3E + 1 ? | | 10.00 10.0 | 393.937 | 273411 | 1.001 | 6.74E+C8 | 374.4 | 12 | 250868 | 10.000 | 1.52F+1C | J | 3 47 . 891 | 228014 | 13.003 | 1.208+10 | | 463.554 | 191047 | 215-000 | 3.38E+11 | | 10.00 10.0 | 390.982 | 273116 | 1.191 | 7.60E+08
8.21E+08 | 394.4 | 87 | 250412 | 17.200 | 1-695+10 | | 337-562 | 227547 | 34.274 | 4.14F+10 | | 403.606 | 193709 | 262-520 | 4.208+11 | | | 371.034 | 272775 | 1.106 | 7.C5E • C8 | 394.5 | CR | 250245 | 15-620 | 1.476+10 | | 397.988 | 227378 | 34.026 | 4.10F+10 | | 403-651 | 190412 | 5.430 | 4.028.09 | | Section 1.15 | 391.105 | 272321 | 1.151 | 7.36E+C8 | 394.5 | 79 | 249787 | 14.200 | 1.31E+10 | | 348.059 | 226917 | 49.622 | 6.63E+10 | | 403.7C3 | 1900 72 | 147.000 | 2.126.11 | | 1912 1910 1.487 1.316 1910 1.487 1.316 1910 1.487 1.316 | 391.130 | 27215t | 1.159 | 7.40F+C8 | 394.6 | 64 | 249619 | 13,000 | 1.17E .1C | | 348.085 | 226749 | 19.823 | 5-01F+1C | | | 189774 | 41.000 | 4.446410 | | Section Philips Philips Section Section Section Philips Phil | | 271703 | 1.296 | 8.24E+C8 | 394.6 | 76 | 249148 | | 1.095+10 | | 398.156 | 226292 | 25.314 | 2.8DE+10 | | 403.799 | 189412 | . 900 | 5.93E+0B | | 10.1.0.0 1.1.0.1 1.0.0 | 391.276 | 271539 | 1-465 | 5-436+08 | 394.7 | CI | 248971 | 12.300 | 1.C9E+1C | | 398.181 | 224127 | 8.351 | 6. 95E+C9 | | | 189119 | | 1.956+11 | | 131.131 27Cmc 1.401 0. | 391.297 | 271277 | 1.421 | 9. C9F • CB | 394-7 | 76 | 248478 | 27.379 | 7.03E+1C | | 348.252 | 225655 | 2.343 | 1.63F+C9 | | 403.895 | 188782 | 128.000 | 1.786+11 | | 1311-131 1-156 1-157 1-157 1-157 1-157 1-157 1-157 1-157 1-157 1-157
1-157 1 | 301.323 | 270944 | 1.401 | 9.018.08 | 394.6 | 65 | 248307 | 14-417 | 1.346+10 |] | 348.278 | 225533 | 1.453 | 9.816+(8 | | | | | 3-336+11 | | Section 1.42 | 371.368 | 27C653
27C686 | 1.417 | | 394.8 | 73 | 247840 | 17-916 | 1.76E+10 | | 398.349 | 223078 | 12.969 | 1.20F+10 | | 403.992 | 188152 | 290.030 | 4-715-11 | | 101-101 26-001 1-36- 1-20-101 20-002 | 391.420 | 276319 | 1.283 | 6-22E-CB | 394.8 | 98 | 24 74 71 | 17.207 | 1.68F+1C | | 398.374 | 22491? | 17.067 | 1.69E+10 | | 494.037 | 187959 | 290.000 | 4.716+11 | | Sale 1864 1.501 C. | 391.491 | 27C026 | 1-401 | 9. C2E+C8 | 394.9 | 69 | 24 72 04 | 15-823 | 1-66F+10 | | 348.445 | | 34 904 | 4.20E+1C | | 404-087 | 187538 | 255.000 | 4-03E+31 | | 131-167 26775 1-125 1- | 391-516 | 265493 | 1.564 | 1.01E+C9 | 394.9 | 45 | 247033 | 16.224 | 1.56E+10 | | 398.471 | 224289 | 34.291 | 4-12E+10 | | 404.229 | | .860 | 5.67E+CA | | 131.412 260.07 1.50.0 0.50.07 1.50.0 0.50.07 1.50.0 | 391.561 | 269234 | 1 | 5.85E+C8 | 3 + 5 - 0 | t 6 | 240504 | 16.494 | 1.596 -10 | | 398.542 | 223828 | 46.742 | 6.11F+1C | | 434.280 | 96318 | 1.040 | 6.84F+C8 | | 101.702 208-33 1.544 4.907-08 390.188 24773 5.7216 7.816-08 390.188 24773 1.118-08 390.188 24785 3478-08 7.816-08 390.188 24785 3478-08 390.188 24785 24885 2478-08 390.188 24785 24885 2478-08 390.188 24785 24885 2478-08 390.188 24785 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885 2478-08 24885
24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 24885 2488 | 271.612 | 245067 | 1.544 | 9.588+08 | 795.0 | 52 | 246393 | 16.089 | 1.54E+1C | | 358.567 | 223661 | 5.685 | 4-41E+09 | | 404.325 | 186030 | 1.200 | 7. 88F + CF | | 101-102 208-33 1.564 6.907-102 391-102 2-273 5-230 5-2 | 371.673 | | 1.595 | | | | 245924 | 15.823 | 1.516 - 10 | | 398.666 | 223018 | 12.117 | 1.10E+10 | | 404.378 | 185693 | 129.000 | 1.746+11 | | 191.00 20791 1.00 | 391.709 | 268433 | 1.544 | 5.99E+08 | 395.1 | 99 | 245753 | 5.736 | 4-376+09 | | 398.712 | 222717 | 1.103 | 7.785.08 | | 404.423 | | 120.000 | 1.61F+11 | | | 391.780 | 267941 | 1.040 | 1.066+09 | 395.2 | 60 | 245285 | 7.947 | 6.416+09 | | 398.763 | 222349 | .983 | 6.55E+(8 | - 1 | 404.474 | 185070 | 216.000 | 3.258+11 | | 11.1-62 2-72cc 1.895 1.205-09 395, 396 24.485 14.791 1.896-10 198, 495 27.178 14.702 1.386-10 1 | 391.805 | 267772 | 1.737 | 1-135-09 | 395.2 | 85 | 245116 | | | | 399.808 | 222054 | | 8-206-08 | | | 184781 | | | | 33,400 200CT 1.047 1.05C-00 35,400 32,400 3 | 341.876 | 2673CF | 1.835 | 1.20E+09 | 395.3 | 56 | 244050 | 18.791 | 1.89F • 10 | | 398, 659 | 221718 | 14.201 | 1.345+10 | | 404.571 | 184441 | 485.000 | 8.34E+11 | | 33,400 200CT 1.047 1.05C-00 35,400 32,400 3 | 331.902 | 267139 | 1.792 | 1.17E+C9 | 395.3 | 82 | 244479 | 19.540 | 1.986+10 | | 198.904 | 221426 | 28.503 | 3.246.10 | | | 184142 | . 760 | 5-01F+C8 | | 33,400 200CT 1.047 1.05C-00 35,400 32,400
32,400 3 | 391.973 | | | 1.316+09 | 395-4 | 53 | 244012 | 22.997 | 2.44F+10 | | 399.196 | 215532 | 3.623 | 2. 64E+C9 | | 404-667 | 183810 | .950 | 6.25E+CF | | 192-070 266-07 7.677 1.77-66 395.500 7.2376 15.200 1.5 | 371.999 | 266507 | 1.657 | 1.C8E+09 | 345.4 | 76 | 243843 | 21.226 | 2.216.10 | | | | 1.553 | 1.05E+09 | | | 183318 | | 5.925 + CR | | 192-16-16-20-20-20-20-20-20-20-20-20-20-20-20-20- | 392-070 | 264047 | 2.672 | 1.376.66 | 395.5 | 49 | 243376 | 19.389 | 1-97F+10 | | 399.293 | 218937 | 4.300 | 3+21F+09 | - 1 | 404.763 | 183164 | .850 | 5-64E+08 | | 192,100 25-76 3.617 2.68-06 3.617 2.68-06 3.617 2.68-06 3.617 2.68-06 3.617 2.68-06 3.617 2.68-06 3.617 2.68-06 3.617 3.61 | 392.045 | 265882 | 2-651 | | 395-5 | 75 | 243205 | 15.691 | 1-506+10 | l J | 399.347 | 218781
218625 | 1.251 | 8-41F+CP | - 1 | 404-833 | 182866 | -980 | 6.44E+C8 | | 332,777 24496 3.233 2.284.00 3.237.00 3.241 | 392.166 | 265426 | 3.637 | 2.68F+09 | 395.6 | 46 | 242734 | 17.347 | 1.716+10 | | 399.409 | 2)8184 | 10.705 | 9.416+09 | - 1 | 404.859 | 192532 | 160.000 | 2.23F+11 | | 392,120 | 392.197 | 265260 | . 224 | 2.555+09 | 395.6 | 73 | 242561 | 18.205 | 1.825+10 | - 1 | | 21 4322 | 1 - 503 | 1.016+09 | - 1 | 404.529 | | | 2.075.10 | | 332,193 | 322.263 | 764831 | 3.708 | 2-201-00 | 375.7 | 44 | 247791 | 15-044 | 1.436.10 | | 399.727 | 216150 | 8,103 | 6.69E+09 | | 404.555 | 181997 | | 1.70F+11 | | 391,190 24-11 1.221-00 | 397.288 | 264666 | 2.764 | 1.876+09 | 395.7 | 14 | 241922 | 14.665 | 1.386.10 | | 399.791 | 215679 | 10.003 | 8.635.09 | | 405.025 | 181430 | | 3.17E+11 | | 192.450 2-350 4.660 1.2974-00 235.491 74.0902 18.255 1.4874-10 4.50.180 21.355 . 4.5 | 372.359 | 264212 | 2.421 | 1.626.09 | 395.8 | 40 | 241457 | 27.060 | 1.C3F+10 | | 399.815 | 215521 | 12.657 | 1.156.10 | | 405.051 | 181261 | 430.000 | 7.09[+][| | 352-487 2-5117 5-487 4-035-60 35-29 22-097 2-487-10 4-02-40 2139-41 1-021 4-02-40 2139-41 1-021 4-02-40 2139-41 1-021 4-02-40 2139-41 1-021 4-02-40 2139-41 1-021 4-02-40 1-021 1-02-40
1-02-40 | 392.305 | 264045 | 3.251 | 2.24E+C9 | 1 395.6 | 65 | 241245
240992 | 24.759 | 2.70E+10
1.82E+10 | | 400.189 | 213052 | .943 | 6.28F.C8 | | 405.127 | 180794 | 575.300 | 9.86F+11 | | 192.577 29.172 3.27 3.78 2. | | 263565 | 4.503 | 3.22F • C9 | 395.9 | 36 | 240822 | 22.997 | 2.46F+1C | | +30.215 | 212881 | 1.000 | 6.68E+08 | | 405.148 | 180623 | .840 | 5.57E+C8 | | 392.553 26295 8.227 6.051 5.175-06 350.053 24015 18.40 1.025-11 400.052 212767 6.051 5.175-06 350.053 24015 18.40 1.025-11 400.052 212767 6.051 5.175-06 350.053 24015 18.40 1.025-11 400.052 212767 6.051 5.175-06 350.053 24015 18.40 1.025-11 400.052 212767 6.051 5.175-06 350.053 24015 18.40 1.025-11 400.052 21276 2.051 6.052 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052 21276 2.052-11 400.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400.052 2.052-11 400 | 372.487 | 263123 5 | 5.247 | 4.678.00 | 345.0 | 67 | 240651 | 20.153 | 1.686.10 | | 430.284 | 212584 | 1.010 | 6.75E+(A | | 405.219 | 180158 | .940 | 6-17F+C8 1 | | 32-102 32-102 3-10 3-10 3-17-102 3-10-102 | 392.553 | 262914 | 1.247 | 6.47E+09 | 396.0 | 33 | 240184 | 18.940 | 1.926+10 | - (| 400.308 | 212267 | .913 | 6.CBE+CB | ĺ | 405.244 | 179991 | 0.68 | 5.65F+CR | | \$2,10 | 392.575 | 262785 C | 5.817
5.819 | | 396.0 | 5 P | 246015 | | 1.88E • 10
1.96E • 10 | - 1 | +30.672 | 2098A2 | 1.043 | 6.558+08 | ı | 401-314 | 179517 | .900 | 5.91E . CR | | 372,747 28180 6-381 4.86**ct 790,270 23810 2.687 1.86**ct 400,750 2390,27 -723 6-134.ct 400,481 17842 30.00.00 2.48**ft 790,240 2.687 2380,270 2380 | 342.650 | 262320 6 | h. 819 | 5.17E+05 | 396.1 | ?9 | 239549 | 72.879 | 2.44E+10 | - 1 | 420.699 | 209490 | 1.063 | 7.096+08 | ı | 405.339 | 179349 | .910 | 5. 37F+CP | | 372,747 28180 6-381 4.86**ct 790,270 23810 2.687 1.86**ct 400,750 2390,27 -723 6-134.ct 400,481 17842 30.00.00 2.48**ft 790,240 2.687 2380,270
2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380,270 2380 | 392-676 | 241812 | 5-819 | 4. 34F+C4 L | 796.7 | CO. | 239079 | 4.574 | 3-41F+09 | - 1 | 430.770 | 209386 | 1.062 | 7.C8E+C8 | I | 405.410 | 179896 | 216-000 | 3-176-11 | | 392,893 201182 0.381 4.815-CC 394,796 238433 5.035 4.725-CC 470,695 208591 4.705 3.051-CC 4.705 3.051-CC 470,695 208591 4.705 4.7 | 372.747 | 201686 | 9.381 | 4.80F.C9 | 396.2 | 26 | 239910 | 2.682 | 1.886+69 | - 1 | 400.756 | 239347 | -923 | 6.13E+C# | - 1 | 405.436 | 179717 | 157.530 | 2.316.11 | | 180.452 2.81.05 2.81.06 340.27 23823 2.22 1.505.cc 400.888 200.873 1.605.cc 400.888 23823 2.22 2.22 | 392.774 | 261497 | | | 396.2 | 96 | | 4.937
5.635 | | | 426.865 | 206591 | 4.703 | 3.09E+09 | - 1 | 405.507 | 178256 | 167.000 | 2.184+11 | | 192.402 200377 7.477 5.764cc 790.416 2370.29 30.275 3.515:10 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 432.276 432.27 | 392.845 | 261017 | 5.522 | 4.936+09 | 396.3 | 22 | 238263 | 2.262 | 1.56E . C9 | | 470.889 | 208437 | 6.503 | 5.10E+C9 | - 1 | | 178390 | | | | 192.402 200377 7.477 5.764cc 790.416 2370.29 30.275 3.515:10 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 482.276 431.286 2394.4 432.276 432.27 | 392.871 | 260842 | 7 + 0 5 5 | 5.196+09 | 396.3 | 4 A
9 3 | 238293 | 27.762 | 3.146+10 | | 471.255 | 2C 601 6 | | 7.06E+CR | | 405.603 | 177634 | 345.000 | 5.36F+11 | | 393,103 29946 11.405 4.784.00 797.01 42.500 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 7.114.00 7.114.11 | 192.942 | 26C377 | 1.477 | 5.78E+C5 | 396-4 | 1 9 | 237629 | 30.275 | 3.515+10 | - 1 | 401.261 | 205846 | .983 | 6.52F+C8 | - 1 | 405.628 | 177469 | 417.500 | 6.68E+11 | | 1903-039 259746 11-487 4,778-00 291-10 21-510 2-56-11 431-44 26-776 3-0-73 2-138-60 435-60 7-34-11 391-63 25-776 11-487 4,788-00 7-34-11 391-63 25-776 11-487 4,788-00 7-34-11 391-63 25-776 11-78 405-60 7-34-11 391-63 25-776 11-78 405-60 7-34-11 391-63 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 25-776 405-60 7-34-11 391-60 391-776 391-776 405-60 391-776 405-60 391-776 405-60 391-776 405-60
405-60 | 393.013 | 259514 | 456 | 6.7LE . 09 | 396-4 | 4.4
FQ | 237170 | 22.829 | 2.44E+10 | | 421-417 | 204946 | 1.082 | 7.21E+CB | - 1 | 405.679 | 177016 | 442.500 | 7.11F+11 | | 393,110 2542P6 10.815 94,000 7.2647 23912 2795410 472.121 200244 2.753 1.49[6:07 405.744 17640] 859,000 1.418-17 301.130 254117 11.744 1.6128-10 304.611 230300 30.273 3.315-11 21.74401 305.744 1.6128-10 304.611 230300 30.273 3.315-11 200246 2.753 1.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 3.753 2.78860 405.744 1.76401 859,000 1.78147 200743 405.744 1. | 393.039 | 259746 11 | . 467 | 5.77E+09 | 396.5 | 15 | 237004 | 27.510 | 2.54E+10 | | 431.443 | 204776 | 3.027 | Z-13E+C9 | | 405.724 | 176951 | 455.DCQ | 7.34E+11 | | 1951.10 254.17 11.7% 1.21+16 196.61 239.50 30.275 3.515.16 402.157 200673 3.575 2.765.60 405.420 1762-2 199.60 1.776+12 199.60 1.776+12 199.60 236.65 7.133 2.48-00 1.776+12 199.60 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.133 2.48-00 236.65 7.135 236.65 7.135 7 | | 255575 10
255286 10 | 0-485
0-815 | | 396.5 | 40 | 236547 | 21.380 | 2.795+10 | - 1 | 402.132 | 200244 | 2.750 | 1.916+09 | | 405-754 | 174403 | 695.000 | 1.18F - 12 | | 193,208 256.55 7.133 5.484-05 396.692 235422 .059 0.355-028 .0220 .775-02 .775-02 .775 | 393-136 | 255117 11 | 1.794 | 1.C1E+1C | 396.6 | 11 | 236380 | 30-275 | 3.515+10 | | 402-157 | 200063 | 3.750 | 2.705+09 | | 405.820 | 176242 | 1000-000 | 1.788 +12 | | 391,256 258:40 7.300 5.444-60 390,769 259.756 1.020 6.78f-fc 402.422 1940.0 1.020 6.98f-fc 402.422 1940.0 1.020 6.98f-fc 403.415 1750.0 7.26f-11 393,300 259.605 5.444 4.05f-fc 390,770 239325 1.020 6.70f-fc 422.422 1940.0 11.233 4.55f-fc 405.484 175190 245.000 3.58f-f1 191,310 257.000 3.58f-fc 402.422 1940.0 11.233 4.55f-fc 405.484 175190 245.000 3.58f-f1 191,310 257.000 3.58f-f1 1.255 6.70f-f0 402.422 1940.0 11.233 4.55f-f0 405.484 175190 245.000 3.58f-f1 191,310 191, | 393.208 | 256655 | 7-112 | 5.485+05 | 376.6 | 87 | 235922 | | 6.35F+C8 | I | 402-227 | 199034 | 1.193 | 7.89E+C8 | | 405.890 | 175797 | 000.000 | 1.77F+12 | | 393,300 257899 4,767 3,478-00 390,779 233325 1.000 6.701-00 422.422 152407 11.733 5.556.49 405.586 175190 245.000 3.537411 390,805 235161 1.203 8.057-08 | 393.234 | 258491 | 7-300 | 5. 64E+09 | 396.7 | 6.0 | 235756 | 1.020 | 6.77E+CP | 1 | 402.257 | 195494 | 1.040 | 6.90F.08 | I | 405.515 | 175634 | 455.000 | 7.26E+11 | | 39,310 257899 4.76, 3,475.00 396.805 235161 1.203 8.037.08 492,447 192241 160.000 2.486.11 | 393,304 | 250065 | 5.439 | 4.03F+09 | 396.7 | 79 | 235325 | 1.009 | 6.70E + CP | | 432.422 | 198407 | 11.200 | 5.55E+C9 | - 1 | 405.586 | 175190 | | 3.53F+11 | | | 393.310 | 257899 4 | .767 | 3.476+09 | 390.6 | 35 | 235161 | | 8.035.08 | ĺ | 402.447 | 196241 | 160.003 | 2.48E+11 | 1 | | | | 1 | | | 1 | | | | - 1 | | | | i | i | | | | | - 1 | | | | | | | | 0.3049 (*** | | | | | | | | | _ | | | | | | | | | # TABULATIONS OF CURRENT AND INFERRED ELECTRON DENSITY FOR RAM C-I, PROBE 2 | ELAPSED
TIME,
SECONOS | ALIITUDE,
FEET | CURRENT,
HICROAMPS | ELECTRON DENSITY, ELECTRONS PER CUBIC CENTIMETER | ELAPSED
TIME,
SECONDS | FEFT | CURRENT.
MICROAMPS | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | | ELAPSED
TIME,
SECONDS | ALTITUDE:
FEET | CURRENT,
MICROAMPS | ELECTRON DENSITY, ELECTRONS PER CURIC CENTIMETER | | ELAPSED
TIME,
SECONDS | ALT (*UDE
FEE * | . CUPRENT.
MICHOAMPS | ELECTRON
DEMSETY,
ELECTROMS
PER CURIC:
CENTIMETER | |-------------------------------|----------------------------|-----------------------|--|-----------------------------|----------------------------|----------------------------|--|---|-------------------------------|--------------------------------------|-----------------------|--|-----|-----------------------------
----------------------------|-------------------------|---| | 389.640 | 281897 | .670 | 3.93E+08 | 393,211 | 258635
258471 | 9,119 | 6.28E.09
7.12E.09 | | 396.711 | 235735 | .905 | 5.48E+08 | | 402.425 | 198386 | 32.063 | 2.59F+10 | | 389.666 | 281729
241269 | .470 | 2.76E+C8
3.93E+G8 | 393.231 | 258471 | 10.153 | 4-87F+09 | | 396.737 | 235569 | .853 | 5.16E+08 | | 402.451 | 198221 | 307-000 | 3.60E+11 | | 389.788 | 280569
280684 | .490 | 2.87E+08 | 393,337 | 258372
258044
257878 | 6.451 | 4.24E+09
2.79E+09 | | 396.8CR
396.834 | 235141 | 1.002 | 5.76E+08 | | 402.521 | 197761 | 255.000 | 3.28E+11 | | 389.857 | 280519 | .640
.730 | 3.76E+G8 | 393,359 | 257711 | 7.130 | 4.75F+09 | | 396.878 | 274687 | 28.976 | 2.51E+10
1.50E+10 | | 402.592 | 197299 | 175.000 | 2.24E+11
1.69E+11 | | | 240354
246064 | -700 | 4.11E+08 | 393,404 | 257420
257254 | 12.757 | 1.048+10 | | 396.904 | 234120 | 13.390 | 1.016+10 | | 402.644 | 196962 | 2.473 | 1.546+09 | | 389.986 | 2798c9
279733 | .730
.640 | 4.29E+C8
3.76E+08 | 393,456 | 257088
256797 | 14.917 | 1.126+10 | | 396.975 | 234646 | 32.323 | 1.21E+10
2.#8E+10 | - 1 | 402.699 | 196667 | 3.050 | 1.916+09 | | 390.024 | 279441 | .670 | 3.946+08 | 393.526 | 256529
256466 | 14.917 | 1.12E+10
1.06E+10
1.64f+10 | | 397.027
397.071 | 233727 | 35.937 | 2.73£+10
3.56E+10 | | 402.741 | 196323 | 3.050 | 1.93E+09 | | 390.076 | 2791C7
278814 | -640
-720 | 3.76E+09
4.23E+09 | 393,591 | 256165 | 13.929 | 9.525+09 | | 397.123 | 233265
233696 | 45.441 | 4.39E+10
4.34E+10 | | 402.812 | 195829 | 1.226 | 9.71F+0A
7.52F+03 | | 396-147 | 278642 | .700 | 4.11E.C8 | 393.649 | 255926
255529 | 12.117 | A. 79F+09 | | 397.168 | 2328CO
232631 | 1.120 | 6.79E+07 | | 402. 928 | 195367 | 147.000 | 1.53E+11
2.05E+11 | | 396.218 | 278171 | .800 | 4.70E+C8 | 393,720 | Z5536C | 9.705 | 6.49E.09
6.78E.09
8.245.09 | | 397.220 | 272463 | .919 | 6.06E+UR | | 402.934 | 19510A
195029
194734 | 345.000 | 2.40F+11
4.10F+11 | | 390.244 | 270CC4
277025
277531 | .760 | 4.59E • C8 | 393,746 | 255192
254471 | 11.469
14.171
14.917 | 1.065+13 | | 397.264 | 231990 | 1.070 | 6.49E+C8
5.46E+C8 | | 402.979
403.035 | 194565 | 405.000 | 4.92E+11 | | 390.227 | 277531
277360 | .790 | 4.65£+08
4.47E+08 | 393,816 | 2547C3
254535 | 14.917
15.560
15.644 | 1.136.10 | | 397.314
397.256
397.384 | 231 #25
231 #25 | 1.350 | 6.31E+08
8.19E+C8 | | 403.031
403.076 | 194397 | 417.500
385.000 | 5.09E t11 | | 396.365 | 277190 | .750
.840 | 4.59F +CR | 393.846 | 254241 | 15.044 | 1.145.10 | | 397.384 | 231365 | 12.650 | 7.176.09 | - 1 | 403.102 | 193774 | 345.000 | 4.0°F • 11 | | 390.436 | 276722
276553
276259 | .55C | 5.00E +G8 | 393,917 | 2539C2
253608 | 15.623 | 1-218-10 | | 397.41C
397.454 | 230901 | 14.500 | 1.116+10 | - 1 | 403.172 | 193445 | 2.470 | 1.55F+09 | | 390.500 | 276259 | .860 | 5.06F+L 8 | 194.000 | 253662 | 15.623 | 1.21E+10 | | 397.504 | 23672C
236559 | 10.700 | 1.49E+10 | | 403.224 | 193152 | 4.500 | 5.95F+09
1.66F+10 | | 390.500
190.531
313.550 | 276293 | .820 | 4.82E+08
5.06E+38 | 394.03 | 253275
252985 | 16.652 | 1.29E+10 | | 397.551 | 230242 | 33.370 | 7.62E+10
2.95E+10 | | 413.295 | 192724 | 44.000 | 4.125+17 | | 390.406 | 275+37
275+to | .850 | 5.00E+08 | 394.13 | 252455 | 17.630 | 1.326.10 | 1 | 317.003 | 229923 | 42.200 | 3.961.10 | | 403.321
403.365 | 1925er
192271 | 189.000 | 1.52F+17
2.04F+11 | | 390.452 | 275255 | .860 | 5.06F+UR
5.3CE+CS | 394.175 | 252767 | 15.301 | 1.166.10
1.126.10 | l | 397.672 | 279455 | 43.000 | 4.315.10 | | 403.417 | 197106 | 216.000 | 2.3*f*11
2.09F*11 | | 396.773 | 274825 | .340 | 4.94E+08 | 394.22 | 252649 | 13.074 | 1.046.10 | | 397.744 | 228987 | 42.700 | 4.67E+10 | | 403.467 | 191484 | 325.000 | 3. Pof •11
4.34* •11
4.84* •11 | | 346.794 | 274340 | 110 | 5.76t •C4
6.13E •C8 | 394,329 | 251631 | 15.300 | 1.16F+10 | l | 397.442 | 227635 | 42.330 | 3.966 ·10
7.941 ·10 | | 403.513 | 191318 | 405.000
405.000 | 4.84F-11
5.97F+11 | | 390.844 | 274010 | 1.300 | 4.89F + C8 | 394.364 | 251178 | 18.000 | 1.29E+10
1.41F+10
1.62F+10 | l | 397. F- 8
397. 894 | 228164 | 29.530 | 1.571.10 | | 473.5A3 | 191726 | 575.000 | 7.216-11 | | 390.014 | 271727 | 1.764 | 6.27E+08 | 394,416 | 250547
250557 | 20.200 | 1.855.10 | ļ | 307,894 | 227654 | 41.081 | 3-856 -10 | | 473.654 | 100,01 | 25.900 | 2.035.10 | | 300.046 | 273389
27300
272426 | 1.002 | 5.70E+CH | 394,450 | 250457 | 24.000 | 2.1°E:10
2.0°F:10 | ļ | 307.991 | 227147 | 48.422
51.17C | 4.75t · 10 | | 407.706 | 190-51 | 270.000 | 3.076 111 | | 391.611 | 272426 | 1.741 | 6.14E+C8
6.28E+C8 | 394.486 | 250225 | 21.530 | 1.746+10 | İ | 398.036 | 227.63 | 59.329 | 7.091-10 | | 403.751 | 190-51
189728
189759 | 69.000 | h. 246+10 | | 391.747 | 27230 | 1.261 | 6.26E+29 | 394,60 | 249766 | 17.200 | 1.346.17 | | 398.04F
398.137 | 221724 | 70.045 | 7.48[+10 | | 403.933 | 180101 | .900 | 5.64F+0#
2.6'6+11 | | 191.114
391.178 | 272.75 | 1-147 | 6.77F+2R
7.43E+38 | 304,65 | 249303 | 15.300 | 1.105.10 | | 398.159 | 276415 | 51.544 | 1.301.10 | | 403.871 | 186729 | 235.200 | 2.615.11 | | 391-204 | 271682 | 1.257 | 7.53[+68 | 394,70 | 248249 | 15.000 | 1.145.10 | | 398.229 | 2261C7
225819 | 15.552 | 1.301.10 | | 423.943 | 136468 | 485.000 | 5.945+11 | | 391.274 | 271256 | 1.269 | 7.69E .CB | 394,77 | 248454 | 15.172 | 1.166+10 | 1 | 394.255 | 275678 | 1.904 | 1.165.69 | | 403.969 | 199131 | 194.160 | P. 56E+11 | | 391.300 | 271 750 | 1.312 | 7.756.38 | 394.85 | 2452P6
247987 | 11.907 | 1.24F+10 | | 348.376 | 2/5/22 | 15.423
27.571 | 1.225.10 | | 404.045 | 187437 | 593.003 | 7.39F+11
7.38F+11 | | 391.371 | 275632 | 1.290 | 7.576 +CA | 394.876 | 247816 | 74.942 | 2.1CE+10
1.97E+10 | l | 398.178 | 224844 | 31.867 | 3.336+10 | | 404.232 | 186600 | 940.000 | 5.10E+C3 | | 191.421 | 276465 | 1.254 | 7.42E+CR
7.70E+DA | 394.94 | 247153 | 21.073 | 1.726+10 | ĺ | 398.474 | 224264 | 53.215 | 4.58t +10
5.26t +10 | | 404.258 | | 1.300 | 6.275+29 | | 391.40 P
391.474 | 270304 | 1.159 | 8.17F+28 | 394. 99 | 247312 | 19.349 | 1.516+10 | | 398.510 | 271474 | 60.372 | 6.945.10 | | 404.329 | 186797
186709
185840 | 1.160 | 7.34E+39
2.47E+10 | | 391.564 | 26 93 73 | 1.360 | 8-196+08 | 395.00 | 246442 | 19.239 | 1-545+10 | | 398.571 | 27 244 [| 10.445 | 7.576+09 | | 404 - 441 | | 255.000 | 2.875.11 | | 391.590 | 264213
249-44
249762 | 1.353 | A. C7E+CA | 395.140 | 246073 | 19.239 | 1.546.10 | | 398.642 | 22 11 71
27 25 54
27 26 51 | 34.674 | 3.104.10 | | 474.420 | 145378
145214
185349 | 345.000 | 4.056+11 | | 391.650 | 265562 | 1.357 | 8.21E+(R | 375,166
395,19
395,27 | 245721 | 7.300 | 1.48F+10
4.94F+09
7.78E+09 | Ì | 398.741 | 277651
222522
272324 | 1.120 | 0.931.00 | | 404.522 | 184740
184840 | 1000.000 | 1.376+12 | | 391.712 | 249412 | 1.571 | 8.89E 1 . 8 | 395.25 | 244233
244264
245295 | 10.015
9.472
11.579 | 6.66F+39 | | 394.767
394.811 | 222633 | 2.470 | 1.575+09 | | 474.544 | 184419 | 1000.000 | 1.126.12 | | 301.783 | 2:77:1 | 1.559 | 1.056 -04 | 395.29 | 245795 | 11.574 | 9.736.09 | | 398.877 | | 2.630 | 1.605+29 | | 624.659 | 184121 | 1000.000 | 1.326+17 | | 391.61 | 20 74 97 | 1.017 | 1.145.69 | 395.34 | | 201.45 | 2.255.10 | | 398.46? | 221657 | 39.220 | 1.98E+10
3.47E+10 | | 424.673 | 183549 | -640 | 4.175+04 | | 191.954 | 267110 | 1.647 | 1.GCE +39 | 1 395.434 | 244149 | 29.411 | 7.475.10 | ĺ | 100,100 | 51 44C | 3.300 | 7 . 071 459 | | 474.749 | 193126 | 201 | 4.49E+2* | | 301.040 | 20664 | 1.350 | 1-101-09 | 395.45 | 243021 | 27.571 | 2.37E+1C
2.35F+10 | | 399.251 | 219:45
219201
219017
218761 | 4.550 | 2.956.09 | | 474.911 | 182465 | .74C | 4.74F+CR | | 392.647 | 200464 | 1.677 | 1.076.09 | 195.55 | 2 243355 | 21.602 | 1.84E . 10 | | 379.706 | 219017 | 2.150 | 1.36[+09 | | 454.562 | 192511 | 125.000 | 5.51f · C 4 | | 392,099 | 206127
206127
205903 | 2.179 | 1.246.69 | 395.571 | 243184 | 18.940 | 1.516.10 | 1 | 399,412 | 218:00 | 1.731 | 7.516.09 | | 434.916 | 182217 | 83.000 | 7.276.10 | | 393.141 | 215572 | 2.974 | 2.366.59 | 395.65 | 2424#5
242712
242540 | 17.207 | 1.135.10 | | 349.027 | 71677 | 1-14 | 1.756 9 | | 404.013 | 141578 | 716.000 | 4.046.11 | | 392.145 | 204239 | 3.417 | 2.386.09 | 194.67
394.72
395.74 | | 22.497 | 2-076+10 | l | 300,7; | 21 4 12 9 | 14.57 | 1.105.10 | | 475.024 | 181449 | 100.000 | 1.325.12 | | 102.25/ | 204412 | 1.461 | 2.146.09 | 395.77
395.81 | 241901 | 25.127 | 2.12f.12
1.925.10 | | 199,714
199,814 | 51-4-60 | 10.700 | 1.466.3 | | 405.009 | 180773 | 1001.100 | 1.326.12 | | 392.247 | 204344 | 7-192 | 1 - 301 +09 | 395,84 | 241436 | 32.473 | 2.921.10 | | 430.111 | 213731
213731 | 1.020 | 1.246.34 | | 605.151 | 190402 | 1.230 | 7.916.09 | | 397.367 | 244151 | 3.041 | 1.661.09 | 305.86
304.91
344.93 | 741767
240971
240900 | 31.259
24.874
29.056 | 2.51F+10 | l | 476.618 | 21784. | 1.122 | 6 . PSF +C R | | 405.196 | 150177 | .900 | 5-82F+F4 | | 397,432 | 263737 | 4.574 | 2.876.09 | 395.94 | 240470 | 26.140 | 2.516.10
2.416.10 | | 400.24? | 212564
212466
212247 | 1.160 | 7.336.00 | | 405.247 | 179065 | .763 | 4.97F+09
5.86F+09 | | 392.484 | 24 3165 | 7.650 | 3. ACE +C9 | 396.01 | 240371
240142
239993 | 23.510 | 1.96F •17
2.35E •10 | 1 | 400.410 | 210013 | 1.130 | 4.91E+C8 | | 405.343
405.343 | 179496 | . 567 | 5. ALE + OR | | 347.556
312.5m2 | 242521 | 7.548 | 5.41E+29 | 396.06 | 230003 | 26.270 | 2.245.10 | l | 400.676 | 25 9841 | 1.010 | 6.19E +C8 | | 404.347 | 179234 | 520.000 | 0.84F+11 | | 392.627 | 565564 | 7.400 | 4.12F+09 | 106.13 | | 30.774 | 2.72F •10 | 1 | 420.773 | 20904A | 1 - 04/1 | A. 27E + C9 | | 405.419 |
178665
179496
178401 | 270-000 | 5.5rf+11
3.79f+11 | | 392.653 | 56143L
545110 | 7.75 | 5.196+09 | 396.20 | | 20.627 | | ĺ | 476.790 | 21 91 56 | 1.300 | 5.52E + GB | | 405.444
405.510 | 178235 | 62.079
325.079 | 4.076+11 | | 392.77°
352.751
302.777 | 2+1+31 | 7.477
7.214 | 3. 98F +C9 | 396.27 | 239707 | 8.456 | 5.74E+09
5.87E+09 | | 400.844 | 20 P 7 2 0
20 P 5 7 1 | 11-770 | 6.42E+C9 | | 405.540 | 177779 | 27C.CCQ
485.CCQ | 6.366.11 | | 392.977 | 241461 | 7.214 | 4.79E+C9 | 396.29 | | 7.947 | 6.41E+C9
5.47E+09 | ĺ | 400.892 | 206166 | 14.200 | 1.05E+10
5.95E+24 | | 405.676 | 177~13 | 1000-000 | 1.406+17 | | 302.822
307.84P
302.674 | 201161
200495
200495 | 7.154 | 4.926+09 | 396.35 | 235072 | 37.313 | 3.44E+10 | l | 401.258 | 265955 | .970 | 5.95E+08 | | 405.676 | 177160 | 1000.000 | 1.406+12 | | | 200525
200525 | 7.130 | 4.73E+09 | 396.42 | 237508 | 33.871 | 3.058.10 | | 401.284 | 205520 | 1.253 | 5.106.30 | | 405.778 | 176431 | 1000.000 | 1.391.12 | | 347.945 | 26C1F7 | 7.477
A.345 | 5.43E+C9 | 396.49 | 2 237149 | 31.575 | 2.478.17 | ĺ | 401.44t
401.472 | 204483 | 24-202 | 5.31E - G8 | | 405.798 | 176763 | 1000.000 | 1.366.12 | | 397.516 | 249724 | 11.469 | 8.20F+C9 | 396.54 | 236417 | 30.609 | 2.69F . 10 | l | 432.16(| 20 00 63 | 40.202 | 4.156.17 | | 405.867 | 175739 | 10,0,000 | 1.346+12 | | 393.767 | 259265 | 12.117 | 4.66E+09
5.75E+09 | 396.58 | 236759 | 32.323 | 2.99E+10
3.10E+10 | l | 402.234 | 149770 | 13.530 | 9.276169 | | 455.807 | 175776
175614
174331 | 1000.000 | 1.346-12 | | 393.140 | 259956 | 12.157 | 9.30E+C9
8.76E+C9 | 396.64 | 236193 | 195.45 | 3.10F+10
5.82F+04 | l | 402.256 | 195162 | 1.470 | 8.26F+C8 | | 405.963 | 175169 | 202.000
56C.CPO | 7.24F+11
6.92F+11 | | L | | | | L | | | | ĺ | 402.425 | 159786 | .32.000 | 2.586 -10 | | L | | | | | Al meter | | | | | | | | | - | | | | | | | | | *I meter = 0.3040 feet | | | | | ٦ . | | | | | _ | | | | | _ | | | | _ | |--------------------------------|----------------------------|-------------------------|--------------------------------------|-------|-------------------------------|----------------------------|----------------------------|-----------------------------------|-----|--|--|-------------------------------|----------------------------------|-----|----------------------------------|----------------------------|-------------------------------|-----------------------------------| | FLAPSED
TIPE, | ALTERUDE. | CURRENT,
PLCRCAMPS | ELECTRENS
ELECTRENS | | ELAPSED
TIME. | ALTITUDE
FEET | , CURRENT,
MICRDANPS | ELECTRON
DENSITY,
ELECTRONS | | ELAPSED
TIME, | FEET | HIGHEAT | | | ELAPSED
TIME, | ALTITUD | E, CURRENT
HICKGAMP | ELECTRON
DENSITY,
ELECTRONS | | SECCHOS | (*) | | CENTIMETER | 1 | SEGCNOS | (a) | | CENTIMETES | | SECUNDS | (a) | | CENTIMETE | A . | SECONDS | (4) | | PER CUBIC
CENTINETE | | 189.669 | 281708 | .473 | 2.43E+(8 |] | 393.240 | 258450 | 12.969 | 5.60E+09 | 1 | 396,715 | 235715 | .995 | 5.75E+C8
6.10E+D8 | 1 | 402.259 | 199452 | 1-320 | 7.79E+08 | | 349.801 | 28C4+3
280498 | .643 | 3.59E+(8 | } | 393.206
393.311
393.337 | 258023 | 9.353 | 7.79E.09
5.92E.09 | 1 | 396.740
396.786
396.811 | 235264
235120 | 1.194 | 6.08E+08 | 1 | 402.428 | 198366 | 22.530
405.000 | 1.51E+10
4.06E+11 | | 389.937 | 280133 | .643 | 3.59E+CB | | 393.362 | 257690 | 7.300
11.575
10.928 | 4.48E+09
7.55E+09
1.17E+10 | 1 | 396.882 | 234955
234050 | 1.203
34.433
30.774 | 6.94E+C8 | 1 | 402.499 | 198200
197908
197740 | 590.000
560.000 | 5.89€ • 11
5.55€ • 11 | | 389.957 | 279878 | .763 | 4.26E.CB | 1 | 393.433 | 257233
257057 | 18-466 | 1.316.10 | 1 | | | 16.205 | 2-35E+10
1-28E+10 | 1 | 402.550
402.596 | 197572 | 485.000
395.000
280.000 | 4.73[+11
3.65E+11 | | 340.024 | 279420 | - 703 | 3.93E+C8 | 1 | 393.504 | 256776
256608 | 21.073
22.997
22.010 | 1.596+10 | 1 | 396.933
396.919 | 234332
234039 | | 2.10E.10
3.88E.10 | 1 | 402.621 | 197109 | 60.000
21.000 | 2.56E+11
4.69E+10
1.60E+10 | | 390.079 | 279687 | . 100 | 3.53E+C8 | 1 1 | 393.555 | 256439 | 20-464 | 1-465+10 | 1 | 1 397-030 | 233873
233704 | 50.581
61.071 | 4. 88E+10
5.35E+10 | 1 | 402.652 | 196646 | 2-250 | 1.40E+10
1.34E+19 | | 190.150 | 278621 | .740 | 4.156.08 | 1 1 | 393.427 | 255974
255805 | 16.928 | 1.176.10
1.176.10 | 1 | 357.075
397.101 | 233244 | 69.477 | 6.25E+1C | 1 | 402.744 | 196302 | 5.050
16.000 | 1.55E+C9
3.09E+09
1.05E+10 | | 390.247 | 278150
277983 | .78J | 4.38E+C8 | 1 1 | 393.498 | 255339 | 12.757 | 8.465.09 | 1 | 357.126
357.172
357.197 | 233075
232779
232610 | -107 | 5.81E.07
5.37E.08 | 1 | 402.815
402.841 | 195808 | 10.000 | 4.34F+09
3.44F+09 | | 390.277 | 2778C4
27751C | .831 | 4-66F+CB | | 393.749 | 255170 | 16-224 | 1.126.10 | 1 | 357.197
397.223
357.267 | 232442
232442
232135 | | 7. C3E+C8 | 1 | 402.686 | 195346 | 255-000 | 2.286.11
2.806.11 | | 390.343 | 277339
277168 | . 903 | 4.82E+C8 | 1 1 | 393.845 | 254682
254514 | 21-226 | 1.53E+1C
1.58E+10
1.55E+10 | | 397.267
397.292
397.318
397.362 | 232135
231970
231904
231513 | .770
.763
.980
2.253 | 4.41E+08
5.67E+08 | 1 | 402.937 | 195007 | 517-500
680-000 | 3.936+11 | | 390.414 | 27687C | . 623 | 4.6QE+0#
5.11E+CB | 1 1 | 393, 916 | 254219
254350 | 21.535 | 1.66F+10 | 1 | 397.362
397.387
397.413 | 231344 | 2.253 | 1.29E.C9 | 1 | 403.034 | 194544 | 1000-000 | 8-65F+11 | | 390,509 | 276532 | .863 | 4. 836+CP
5.11E+08 | 1 1 | 393.941 | 253681
253587 | 22.333 | 1-625+10 | 1 | 397.413
397.458 | 231174 | 22.003 | 1-10E-10 | 1 | 403.080
403.105 | 194084
193918 | 820.030
420.030 | 8-198+11 | | 390.560 | 276073
275907 | - 963 | 5.39E+C8 | | 394,012 | 253421
253255 | 22-829 | 1.06E+10 | 1 | 397.458
397.484
397.509
367.553 | 23070s
230536 | 30.503 | 2.31E+1C
2.20E+10 | 1 | 403.131 | 193753 | 439.000 | 4.04E+11
2.69E+C9 | | 190.604 | 275616 | .943 | 5.28E+C8
5.33E+C8 | 1 1 | 394.083 | 252764 | 24.942 | 1.84E+10
1.03E+10 | 1 | 1 397.580 | 230240
230071
229902 | 53.003
59.003 | 3.39E+10
4.48E+10
5.04E+10 | 1 | 403.202 | 193298 | 12.330 | 7.918+09 | | 390.455
390.7C1 | 275274 | .912 | 5-17E+C8
5-11E+C8 | 1 | 394,134 | 252034 | 25.127 | 1.565+10
1.565+10 |] | 397.606 | 229605 | 69.003 | 5.04E+10
6.14E+10 | 1 | 403,273 | 192368 | 39.000 | 2.525+10 | | 34C.727
390.752 | 274805 | 1.000 | 5.50F+C8
5.62F+CR | 1 | 394.228 | 252188 | 10.032 | 1-366+10 | i | 397.677
197.702
397.748 | 229435 | 72.250 | 6.49E-10
6.35E+10 | { | 403.324 | 192539 | 43.000 | 3.08E+1C
2.77E+11 | | 341.797 | 274325 | 1.207 | 0-43E+C8 | 1 1 | 394.272 | 251774 | 18-000
21-500 | 1.74F+10
1.55E+10 | l | 397.748 | 228965
228782 | 58.000 | 4.986.10 | 1 | 403,394 | 192045 | 385.000 | 3.55E+11 | | 370.648
310.692 | 273496
273706 | 1.223 | 6.25F+C2 | 1 | 394.323 | 251446 | 24.000 | 1.74E+10
2.05E+10 | 1 | 397.774
357.799
397.645
397.671 | 228612
228314 | 50.250 | 5.60E+10
4.18E+10 | | 403,465 | 191630 | 569.000 | 5.35E+11 | | 190.916 | 273537
273368 | 1.207 | 4. 52E+C8 | { } | 394.419 | 250942
250426 | 28.500 | 2.166.10 | | 397.671
397.897
397.943 | 225142
227971
227673 | 28.500 | 01+300.6 | | 403,516 | 191297 | 1000.000 | 8.73E+11
1.00E+12 | | 193.989
191.015 | 273073
272905 | 1.263 | 7.08E.08 | | 394.464
394.489
394.515 | 25053±
250170 | 32.000 | 2.47E+10
2.38E+10 | l | 397.943
357.969
357.994 | 227673
22750 1
227336 | 72.626
70.871 | 3.68£ . 10
6.5CE . 1C | | 403.587 | 190836 | 1000.000 | 1.006.12 | | 191.040
191.086 | 272736
272445 | 1.297 | 7.29E+CE
7.19E+CE | 1 | 394.560 | 250204 | 30.250
27.000 | 2.316.10 | l | 398.040 | 227042 | 89.125 | 8.29E.10 | | 403.658 | 190370 | 202,000 | 4.86E410 | | 391.111 | 27228C
272115 | 1.380 | 7.73F.CF
7.986.CA | 1 | 394.585 | 249745 | 26.500 | 1.98E.10
1.64E.10
1.32E.10 | } | 398.066
398.091
398.137 | 226875
226707 | 101.390 | 9.68E.1C | | 403.709 | 190030 | 175.000 | 3.446+11 | | 391.107 | 27182c
271662 | 1.583 | 8.87E+C8 | | 394.656 | 249292 | 14.700
22.500 | 1.646+10 | 1 | 198.162 | 220410 | 86-184 | 8.35E+1C
7.95E+10 | 1 1 | 403.780
403.906 | 189536 | .840
.930 | 5.02F+C8 | | 391.233 | 271496
271235 | 1.777 | 7. 58E+C8
1. C3E+Q4 | | 394.710 | 248925
248506 | 19.100 | 1.35E+10
1.34E+10
1.44E+10 | | 398.186
398.213
358.259 | 226086
225798 | 13.393
6.897
1.784 | 9. CGE+09 | 1 | 403.851 | 189076 | 365.000 | 3.536+11 | | 391.304 | 271069
275903 | 1.704 | 9.34E+CR
9.57E+QA | | 394.763
394.808 | 248264 | 20-153 | 1.826+10 | | 198.264 | 225658
225492
225202 | 2.250 | 1.036.09 | | 403.90? | 198740 | 53.000 | 3.49[+][| | 391.471 | 27C611
27C444 | 1.733 | 9.68E+CE
9.72E+CB | 1 | 394. 854 | 247968
247797 | 33.057 | 2.14E+10
2.57E+16 | | 398.330 | 225037 | 34.291 | 2.04E+10
2.97E+10 | 1 | 403.973 | 189278 | 000.000 | 9.956+11 | | 371.426 | 27C277
269484 | 1.581 | 1.016.09 | | 394,905 | 247628 | 32.473 | 2.516+10 | | 398.381
348.426
378.452 | 224872 | 50.015 | 4.13E.10
5.45E.10 | 1 | 404.043 | 187819 | 1000.000 | 9.945.11 | | 391.457 | 269618
269652
269360 | 1.531 | 1.096.09 | - { | 395.001 | 247161
246991 | 29.934 | 2.336.1C
2.286.1C
2.196.10 | | 378.452
348.477
358.522 | 224414
224247
223953 | 71.828
8C.533
91.C94 | 1.28E+1C | 1 | 404.093 | 185448 | 1007.000 | 9.94F+11
5.80F+CP | | 391.558
331.593
391.619 | 269192
269025 | 1.923
2.052 | 1. C8f +09
1.15f +09
1.20f +69 | - } | 395.047
395.073
395.058 | 246521 | 28.676 |
2.19E+10
2.22E+10
2.3CE+10 | | 15A.56A | 223786 | 130.503 | 9.47E+10 | 1 | 404.287 | 186277 | . 640
. 750 | 3.87E+08 | | 191.444 | 266731
266561 | 2.215
2.563 | 1 - 24E + CC | - } | 395.144 | 246352
246052
245881 | 30.105
29.412
29.588 | 2.3CE+10
2.24E+10
2.25E+10 | | 398.574
398.619 | 223324 | 4.500 | 1.11f+10
2.70f+09 | 1 | 404.351 | 185#19
185051 | 385.000 | 8.75F+1C
3.54E+11 | | 391.690 | 248120 | 2.355
2.651 | 1.44F.09 | } | 395.170
395.195 | 245710
245412 | 12.224 | 8.11E.09 | | 398.646
398.672
398.719 | 223149
222974
222670 | 34.585 | 0.CRE+10
2.68E+1C | - { | 404.429 | 185357
185193 | 175.000 | 3.44E+11
5.32E+11 | | 391.761 | 268066
267844 | 2.73t
2.615 | 1.53E.09
1.58E.09 | - } | 395.241 | 245243 | 11.578
14.665
17.630 | 7.62E+09
1.00E+10
1.74E+10 | | 398.744 | 222501 | 13.003 | 8.68E+09
1.C1F+09 | - 1 | 404.480 | 185729 | 1000.000 | 9.935.11 | | 391.812
391.857
391.853 | 267730
267436 | 3.023 | 1.70E.09 | - } | 395.292
395.337
395.363 | 244778 | 16.359 | 1-13E+10
2-77E+10 | | 398.770
398.815
348.840 | 222307
222012
221844 | 5-603 | 1.15F+1C
3.42E+09 | - 1 | 404.551 | 18456A
18439A | 1000.000 | 9.935+11 | | 191.908 | 267266
267097
264861 | 2.904 | 1.736.09 | 1 | 395.386
295.434 | 244436 | 34.929 | 2.75E+10
2.71E+10 | | 338.866 | 221676 | 33.000 | 2.50F+C9 | - 1 | 404.627 | 184101 | 1000.030 | 9.92E411 | | 391.554
391.980
392.005 | 200033 | 3.302 | 1.876+04 | - } | 795.459
375.485 | 243469
243400 | 34.929 | 2.74E+10
2.71E+10 | | 399,172 | 219944 | 61.503
73.503 | 5-21E-10
6-41E-10
6-81E-09 | - { | 404.744
404.814 | 183305 | .530 | 1.04E+C8 | | 192.051 | 266172 | 2.748
3.507
4.135 | 2.00E.C9 | 1 | 195.530 | 243504 | 30.443 | 2-33E+10
2-31E+10 | | 399.203 | 219491 | 10.500 | 6.83E+C9
4.37E+29 | - 1 | 404.845
404.865 | 182557 | 343.000 | 3.90E+C#
3.14F+11 | | 192.102
3+2.147 | 265840 | 5.250 | 3.10F.09
3.84F.C9 | - } | 395.58L | 243143
242863 | 30.325 | 2.30E.10
2.27E.10 | | 399.254 | 219184
218898 | 12.323 | 8-14F+09
6-47E+09 | - { | 404-976 | 182196 | 175.000 | 1.445+11 | | 122-171 | 245386 | 7.056 | 4.30[-(9 | } | 395.653
395.679 | 242691
242519 | 22.333 | 1.62F+1C
2.25E+1G | | 349.323
349.348 | 218742 | 4.903 | 2.976.09 | { | 404.561
405.CC7
405.032 | 181855 | 355.000 | 3.245.11 | | 192.10 A
392.244
192.269 | 26521R
264928
264790 | 5.434 | 3.80F+C9
3.22E+C9 | - } | 395.775 | 24221P
242047 | 33-019 | 2.616.10 | - 1 | 399.610 | 216749 | 1.373 | 7.976+08 | - 1 | 405.059 | 191387
191219
180922 | 1000.000 | 9.40E+11
9.40E+11 | | 392.295 | 264525
264337
264170 | 5.24 | 3.126.09 | - 1 | 395.776
395.821 | 241594 | 33.871 | 2.441.5 | - 1 | 399.702 | 216279 | (3-00) | 8.636.09 | - 1 | 405,129 | 180751 | 16,000 | 1.0#E+10
5.04F+0E | | 392.301
392.437 | 244003 | 5. DF5 | 3.58E+C4 | | 395.845 | 241246 | 45.880
36.708 | 3.79E +10
2.90E +10 | - 1 | 399.773 | 215798 | 17.200 | 1-186-10 | - { | 405.197 | 180783 | -780 | 4-TREACO I | | 372.437
392.463
372.4*8 | 263711 | 8.351 | 5-186-04 | | 395. 517 | 243750 | 37.034 | 2.098.10 | - 1 | 199.071 | 215481 | 1 72.002 | 9.261.10 | 1 | 425.250 | 180116
179936
179644 | .730
.730
.820 | 4.44E.CP
4.44E.OB
5.C4E.CB | | 372.4*8
192.534 | 263375
263081 | 9.235 | 5.81E+C9
1.43E+C0 | | 395.965
376.014 | 249608 | 33.872 | 2.635.10 | - 1 | 400.196 | 213204 | 1-603 | 9.30F+C8 | - { | 405.320 | 179475 | .870
.730 | 1.045.08 | | 392.560 | 262743 | 11-252 | 7.77F+09
8.40E+09 | - } | 396.039
396.065 | 214912 | 34,421 | 2.645.10 | - 1 | 407.266 | 212386 | 1.373 | 7.58E+0F | - 1 | 405.39t | 179011 | 765,CD0
605-000 | 7.44E+11
5.78E+11 | | 342.631
342.657
342.682 | 262447 | 10.705 | 7.19E+0C | 1 | 396.110 | 239676
239505 | 35-415 | 2.77E • 1G
2.92E • 10 | ı | 400.453 | 217278 | 1.453 | 8.44E+C8 | - 1 | 455-442 | 178544
178675
178381 | 430.000 | 4.00E+11
5.79F+10 | | 392.682
392.728
372.75 | 2010C9 | 9.472 | 5.986.00 | - 1 | 396, 207 | 234335
234036 | 12.009 | 7.94E+09 | - 1 | 400.705 | 209819
209647 | 1.122 | 6.20E+C8
6.55E+C8
6.03E+C8 | - 1 | 405.488
405.513
405.579 | 178214 | 74.200
485.000
485.000 | 4.50E-11 | | 392.780 | 261612 | 10.264 | 6.56E+C9 | | 396.232 | 238967
236686 | 13.454 | 9.245.69 | ļ | 400.777 | 209345 | .453 | 5.57E+C8 | - { | 405. 584 | 178048
177758
177593 | 1000.000 | 9.905.11 | | 397. 926
392.452
392.977 | 261139
260969 | 10.264 | 7.45E+C9
6.56E+C9 | - } | 396.303 | 236390 | 13.454 | 9.728+09 | ļ | 400.802 | 209004 | 1.000 | 5.86E+C8 | - { | 405.609
405.635
405.680 | 177427 | 1000.000 | 9.906-11 | | 342.723 | 260890
260504 | 10.467 | 7.45E+09 | | 396, 354 | 237050
237755 | 60.024 | 5.27E+10 | - 1 | 400.871 | 208553 | 18.003 | 1.276+10 | - | 405. 205 | 176775 | 1000.000 | 9.905.11 | | 392.549
542.574 | 260335 | 10.595 | 0.81E+09
7.45E+09 | - 1 | 396, 451 | 237567 | 53.882 | 4-67E+10 | 1 | 431.216 | 206144 | .943 | 5-63F+C8 | - [| 405, 731
405, 775
405, 801 | 176524 | 1000.000 | 9.916.11 | | 343.546 | 255877
259764 | 13.454 | 7.496.09 | | 396, 496 | 237129 | 34.788 | 3.136.10
2.736.10 | 1 | 401.287 | 205803
20550# | .813 | 4.76E+C8 | -{ | 405.801
405.826
405.871 | | 1000.000 | 9.916.11 | | 321-271 | 259537
255244 | 16.494 | 1.106.10 | - } : | 396,547
396,592 | 236796 | 36.708 | 2.916.10
3.76E.10 | | 431.475 | 204562 | 3.122 | 1-86F+C9 | 1 | 405.871
405.895
405.922 | | 1000.000 | 9.925.11 | | 371.169 | 255075
2589C7 | 17.067 | 1-166+10 | - } } | 396.619 | 236139 | 34.026 | 4.1CE+1D
2.65E+1D | - 1 | 432.208 | 200047 | 51.000
6.500
15.000 | 9.23E.00
3.77E.10
4.02E.09 | 1 | 405, 922
4)5, 927
405, 992 | 175311 | 1000.000 | 9.921.11 | | 343.215 | 258614 | 13.693 | 9.156.09 | 1. | 396.689 | 235981 | 1.086 | 6.24E+C8 | | 412.234 | 199593 | 15-000 | 9-785-09 | | | - | | | | | | | | L | | | | | Ĺ | | | | | _ | | | | | | 4) meter (| 0.3048 feet | | | | | | | | | | | | | | | | | | # TABULATIONS OF CURRENT AND INFERRED ELECTRON DENSITY FOR RAM C-I, PROBE 4 | | | | ELECTRON | 1 r | | | ELECTRON | 7 | | | | ELECTRON | - | | | | FLECTPON | |-------------------------------|----------------------------|----------------------------------|-------------------------------------|----------------------|----------------------------|----------------------------|--|-----|-------------------------------|--------------------------------------|------------------------------|--|-------|----------------------------------|----------------------------|-------------------------------|--| | FLAPSED
FIFE. | FEET P | CURRENT,
ICRCAMPS | DEMSITY.
ELECTRONS | FLAPSEI
TIPE, | ALTITUDE
FEET | . CURPENT,
MICROAMPS | DENSITY,
ELECTRONS | 1 | FIPE. | ALTITUCE
FEET | . CURRENT. | DENSITY.
ELECTRONS | | FLAPSED
TIPE. | ALTITUDE
FEET | . CURRENT,
MICROAPPS | DENSITY.
ELECTRONS | | SECCNOS | (e) | | PER CUBIC
CENTIMETER | SECOND | (a) | | PER CUBIC | 1 | SECCACS | (a) | | PER CUBIC | | SECONDS | (a) | | PER CURIC | | 389.646 | 201855 | .840 | 4.546+68 | 353.17 | 258886 | 21.535 | 1-43F+10 | 1 | 356.718 | 235694 | 1.002 | 3-61E+C8 | - | 402.338 | 199140 | 42.000 | 2.78E+10 | | 319.672 | 281687
281519 | .803
.783 | 4.23E+C8 | 393.21 | 258594 | 16.652 | 1.06E+1C
9.58E+09 | l | 396.744
396.789 | 235528
235264 | 1.100 | 6.15E+CB | | 402.406 | 198511 | 540.000 | 4-69E+11 | | 389,744 | 281225 | -800 | 4-33F+CA | 393.26 | | 14.171 | 8. 68E+C9
6.97E+C9 | l | 396.814 | | 1.312 | 7.33E+06 | | 402-457 | 198179 | 710.000 | 6.305.11 | | 389.794
399.839 | 260928 | .803 | 4.10E+C8
4.31E+C8 | 393.34 | 257836 | 10.374 | 6.25E+09
7.89E+09 | l | 376-685 | 234935
234645
234478
234311 | 45.883
34.127 | 3.43E+10
2.42E+10 | | 402.528 | 197719 | 710.000
680.000 | 6.29E+11 | | 369.864 | 28C478
28C313 | . 900 | 4.86E+05 | 393.41 | 257378 | 12.757 | 1.49F+10 | l | 396.911
396.937 | 234476 | 34.127
23.664
34.929 | 1-ADF+10 | | 402.554 | 197551 | 345.000 | 4.48E+11
2.85F+11 | | 359.535 | 28C023
28C023
279857 | . 903
. 893 | 4.86E+C8 | 393.43 | 257047 | 27.319 | 1.88E+10
2.10E+10 | l | 396-962
397-007 | 234016 | 62.832 | 2.49E+10
4.97E+10 | | 402.624 | 197088 | 31.500 | 2.02E+10
1.64E+10 | | 387.960
359.986
390.031 | 279691 | .907 | 4.54E+C8
4.87E+C8 | 393.50 | 256755
256587 | 30.275 | 2.11E+1C | l | 397.076 | 233685 | 70.645 | 5.71E+10
7.C2E+10 | | 402-695 | 196624 | 7.300
5.400 | 4.30E+69
3.14E+69 | | 390.031
390.056 | 279400 | -900 | 4.87E+C8 | 393.55 | 256418
256122 | 29.235 | 2.03E+10
1.68E+10 | l | 397-104 | 233223
233054 | 87.897 | 7.39E+10
7.57E+10 | | 402+747 | 196280 | 13.000 | 7.876.09 | | 390.082 | 279233
279066
278771 | •903
•913 | 4.88E+C8 | 393.630 | 255953 | 22-333 | 1-49E+16 | l | 377-175 | 232758 | .761 | 4.28E+C8 | | 402.793 | 195955 | 21.000 | 1.99E+10
1.31E+10 | | 390.127
370.153
390.179 | 27860C | . 923 | 5.01E+C8 | 393.70 | 255487 | 16.359 | 1.056+10 | l | 397-226
397-271 | 232421 | 1.203 | 2.22E.CB | | 402.844 | 195619 | 69.000
345.000 | 4.76E+10
2.84E+11 | | 390.225 | 278428
278130 | .943 | 5.12E+C8
5.08E+CR | 393.72 | 255318
255124
254829 | 21.073 | 1.40E+10
1.40E+10
1.93E+10 | l | 397.271
397.296
397.321 | 232114
231945
231784 | 1.003 | 5.45E+C8
5.62E+C8 | ı | 402.915 | 195155 | 490.000 | 3.62E • 11 | | 190.250 | 277963 | . 983
. 983 | 5.36E.CB | 393.79 | 254661 | 27.952
29.588
30.774 | 1.93F+10
2.06£+10 | l | 397.321
397.365
397.390 | 231784
231492
231323 | 14.203 | 6.C7E.C8 | | 402.986 |
194691
194523 | 1000.000 | 9.03E+11 | | 390.320 | 277486
277318 | .923 | 5.10E+C8 | 393.64 | 254493
254198 | 30.774 | 2.16E+1C
2.09E+10 | l | | 231323 | 31.003 | 2.C5E+10
2.16E+10 | | 403.03A | 194355 | 1000.000 | 9.026+11 | | 390.372 | 277147
276849 | 1.023 | 5.55E+CA
5.67E+C8 | 393.91 | 254198
254029
253860 | 29.934
30.937
30.609 | 2.17E+10
2.14E+10 | l | 367.461
397.487
397.513 | 231154
23C858
23G687 | 31.000 | 2.10E+10 | 1 | 403.104 | 193898 | R20-000 | 7.24E+11 | | 370.442 | 27668C
276511 | 1.023 | 5.67E+CA | 393.990 | 253566 | 30.105 | 2.10E+10
2.16E+10 | 1 | 397.513 | | 41.000 | 2.82E+10
2.99E+10 | | 403.134
403.179 | 193443
193277 | 14.200
27.500 | 8.46E+C9 | | 340.513 | 374313 | 1.043 | 5.79f + CB | 394.041 | 253234 | 31.259 | 2.206+10 | | 197.558
197.583 | 230219 | 6C.000 | 4.67E+10
5.70E+10 | | 403.205 | 193111 | 27.500 | 1.756+10 | | 170.563 | 276052
275486 | 1.043 | 5.79E+C8 | 394.086 | 252718 | 32.020 | 2.26E.10
2.27E.10 | | 357.609 | 229581
229584 | 15.000 | 6.C7E.10
7.43E.10 | | 403-276 | 192647 | 21.000
55.000 | 1.31F+10
3.80E+10 | | 390.607
370.633 | 275594
275424
275253 | 1.103
1.043
1.083 | 6-11E+08
5-78E+C8 | 374.137 | 252613
252527 | 31.575 | 2.22E.10
2.08E.10 | 1 | 397.706 | 229243 | 87.000 | 7.42E+10
7.22E+10 | | 403.327 | 192519 | \$1.000 | 3.58E+10
3.38F+11 | | 390.659 | 274954 | 1.122 | 80.51E.08 | 394.200 | 252168
252009 | 25.692 | 1.76E+10
1.39E+10 | I | 397.751 | 278931
228761 | 85.000
87.000 | 7.02F.1C
7.216.1C | - 1 | 403.397 | 192065 | 485.000 | 4.116.11 | | 390.730 | 274783 | 1.063 | 5. 87E . C8 | 394.275 | 251754
251589 | 25.900 | 1.77E+10
1.90F+10 | l | 197.803
357.848 | 228590
228292 | 77.000
64.000 | 5.02E+10 | - 1 | 403,46F | 191009 | 500.000 | 4.8CE+11
5.93E+11 | | 390. EC1 | 274304 | 1.212 | 6.61E+CR | 394.326 | 251425
251136 | 29.630 | 2.06E+10
2.18F+10 | l | 317.874
357.900 | 228121 | 50.253
36.553 | 3.76E+1C | - 1 | 403.519 | 191443 | 1000.000 | 7.82E • 11
8.97E • 11 | | 370.851 | 271975 | 1.333 | 7-246+08 | 394.396 | 257971 | 34.100 | 2.43F+1C
2.43F+1C | l | 397.946 | 227652 | 83.069
89.125 | 2.60F+10
6.86L+10 | - 1 - | 403.564
403.590 | 190984 | 1000.000 | 8.96E+11 | | 190.921 | 273685
273516 | 1.370 | 7.44E • CB | 394.422 | 250806
252516 | 39.000 | 3.116.10 | | 197.946
117.972
157.998 | 227481 | | 7.39E.10 | | 403.616 | 190645 | 85.000 | 6.96E-11 | | 390.947 | 273347 | 1.333 | 7.22F.CH
7.21E.CH | 394.492 | 250349 | 39.000 | 7.84E+10 | ĺ | 398.043 | 227021 | 113.494 | 9.816.10
1.026.11 | | 403.713 | 190179 | 270.000 | 2.16F.11
2.92F.11 | | 391.018
391.044
391.089 | 272484 | 1.306 | 7.08F.08
7.34E.C8 | 394.563 | 249891
249724 | 31.000 | 2.18E+10
2.10(+10 | | 378.C95 | 226686 | 117.606 | 1-085-11 | | 403.75A
403.783 | 189656 | 15.300 | 9.41E+09
5.28E+CR | | 371.114 | 272474 | 1.544 | 7.81E+CR
8.34E+G8 | 394.614 | 249556
249258 | 29.500 | 1.986+10 | | 35P. 165 | 72623C | 108.153 | 7.91f + 10
9.24E + 10
1.28f + 10 | 1 1 | 403.809 | 189349 | . 920 | 4.59F+CA
3.59F+11 | | 341.140 | 272094
2718Co | 1.574 | 8.5CE+C8
5.51E+C8 | 374.686 | 249081 | 28.530 | 1.985+10 | | 178-236 | 225778 | 8.045 | 4.84E+C9 | - 1 - | 403.879 | 166867 | 430.000 | 3. 87E • 11 | | 371.210 | 271641 | 1.863 | 1. CZE+C9
1. ObE+09 | 194.760 | 248584 | 24.500 | 1.45F+10 | | 39A.262 | 225471 | 2.575 | 1.66F+09 | | 403. 905
403. 950 | 188719 | 1000.000 | 4.42E+11
8.93E+11 | | | | 2-179 | 1.126+09 | 394.7A6 | 248414
248243
247345 | 30.937 | 2.17E.10
2.38L.10 | | 398.358 | 225016 | 57.264 | 3.52F+10
4.37F+10 | | 404.002 | 188257 | 1000,000 | 8.925.11 | | 391.307 | 271048
27048 | 2.044 | 1.08E.04
1.13F.09 | 394.157 | 241776 | 34-127 | 2.43E+10
2.65E+10 | | 398.384 | 224891
224561 | 79.605 | 5.06E +10
6.42F +10 | | 404.046 | 187799 | 1000.000 | 8.92E • 11
8.92E • 11
8.92E • 11 | | 371.378 | 27(59(
27642)
276256 | 2.C19
1.947 | 1.056.09 | 394.951 | 247607
247311 | 34.274 | 2.445.10 | 1 | 393.455
378.481
398.526 | 224393 | 101.393 | 7.64E.1C
8.51F.1C | - 1: | 404.096 | 187471 | 1000.000 | 7.97E-11
3.98E-08 | | 391.430
121.475 | 269984 | 1.894 | 1.01F+09 | 394.979 | 247140
246969 | 37.871 | 2.41E+10
2.43E+10 | | 198.526 | 224226
223932
223765 | 114.614 | 9.826+1C
1.04E+11 | - 1 4 | 404.264 | 18642n
185798 | .910 | 5.25E.CR | | 371.500 | 269797 | 2.159 | 1-176+09 | 395.050 | 246670
245500 | 33,756 | 2.40E+10
2.40E+10 | | 395.551
398.577
379.622 | 223598 | 16.793 | 1.08E +10
0.65E +1C | - 1 4 | 4C4. 387 | 185630 | 410.000 | 1.115.11
3.596.11 | | 391.571 | 265335 | 2.181 | 1.185.09 | 395.102 | 246329 | 34.421 | 2.466+10 | i | 396.649 | 223127 | 70.254
81.581 | 5.526+10 | | 404.458 | 185171 | 485.000
710.000 | 4.C9F+11
6.176+11 | | 391.672 | 269004 | 2.682 | 1.45E+09 | 395.173 | 246230
245860 | 32.473 | 2-30F+10 | | 398.676 | 272452 | 31.003 | 6.57E.10
2.14E.10 | - 1 - | 404.4#3
404.52# | 185008 | 1000.000 | 8.905.11 | | 391.693
391.719 | 268535 | 3.101 | 1.44E+09 | 395.199 | 245689
245391 | 15.172 | 0.69E+09 | | 374.747 | 222480
222286 | 2.653 | 1.498.09 | : | 404.554
404.580 | 184547 | 1 200 - 000 | 8.90F.11 | | 391.764 | 268369
268046
267878 | 3.302 | 1 - 796 + 09 | 395.269 | 245222
245053 | 20.308 | 1.355+10 | | 374.816 | 221991 | 4.700 | 2.72F+C9
1.54E+IP | - 1 4 | 404.626
404.651 | 184680 | 1000.000 | 8.9CF+11
4.76F+CB | | 391.789
391.815
391.860 | 267878
267709
267414 | 3.625 | 1.93E.09
1.97E.09 | 395.340 | 244754 | 34-159 | 7.44E+10
3.65E+10 | | 398.869 | 221655 | 31.522 | 3-11E+10
2-16E+10 | - 1 4 | 404.676 | 183914
1#374#
183454 | .760 | 4.416.08 | | 371.860
371.896
391.912 | 267414
267245
267676 | | 2.096.09
1.706.09 | 395.352 | 244415 | 54.217 | 4-27F+10 | | 399.161 | 219759
219470 | 6.250 | 3.73E+09 | | 404.747
404.818 | 183284 | .740 | 4.10F.CP
4.07E.CR | | 391.912 | 267676
266780 | 3.144
3.347
3.187
3.600 | 1.816+09 | 395.462 | 243948
243779 | 50.616 | 3.838+10 | | 399.232 | 219304 | 11.703 | 7.276.09 | | 404. R4 J | 102636 | . 470 | 2-73F+C8 | | 371.957 | 266612 | 3.003 | 1.62E.09
2.18E.09 | 395.533 | 243481 | 34.604 | 2.475.10 | | 199.302 | 219878 | 14.203 | 8.97E+09 | | 434.8FR
464.511 | 187469 | *05.000
715.000
345.000 | 3.374.11
1.706.11
2.636.11 | | | 266464
266151 | | 2-16E-09
3-14E-09 | 395.585
395.630 | 243141
247842 | 34.291 | 2.45€+10
2.48€+10 | | 399.351 | 218564 | 28.500 | 1.931.10 | 4 | 4C4.965 | 192004 | 445.000 | 4.10[-11 | | 192.079
192.165 | 265975
26582C
265530 | 5.585
5.497
7.547 | 3. C8F+09 | 395.656 | 242569
242497 | 33.492 | 2.41f+10
2.41f+10
2.50f+10 | | 199.394 | 21829C
216728 | 563 | 5.11F.C9
5.45F.DR | - 1 4 | 405.010 | 181535 | 1000.000 | 7.21F.11
8.916.11 | | 372.150
372.176 | 205363 | 8.760 | 4.62[•09
5.16[+09 | 395.682 | 242197 | 41.622 | 2.50f • 10
3.754 • 10
3.79f • 10 | | 319.679 | 216430 | 1.613
21.503
27.600 | 1.021.05 | ; | 405.Ce1 | 181157 | 1000.000 | 8.916.11 | | 142.247 | 265147
2649CB | 7.847 | 5.46F+09
4.56E+09 | 195.753
195.779 | 242324
241859 | 39.671 | 2.826.10 | | 379.731 | 2160FE
215778 | 20.600 | 1.80F-16
1.34E-10 | - 1 : | 405.137 | 180710 | 134.030 | 1.047.11 | | 112.298 | 264765 | 7.050 | 4. C5F+09
3. 39E+C9 | 195.824 | 241553
241394 | | 2-246-10 | . ! | 399.824 | 215620 | 16.953 | 1.C8F.IC
9.92F.10 | 1 4 | 475.203 | 180262 | .790
1.010 | 4.55E+CA
5.90E+CA | | 392.343
372.369 | 264316 | 7-130 | 4.10E.09 | 395.875
395.520 | 241225 | 62.478
53.882
57.636 | 4-17F+10 | | 430.173 | 213159
212988 | 1.953 | 1-10F+09
1-10E+09 | | 405.253 | 179916 | .730 | 4.21E.CA | | 392.440 | 2639R2
263A93 | 7.849 | 4.56E+09 | 395.546 | 240758 | 69.226 | 4.52[· 1C
3.75E · 1C | | 600.225 | 212817 | 1.053 | 1.C5E+C9 | 14 | 405. 798
405. 123
405. 349 | 179454 | .760 | 4.446.08 | | 372.466
397.492
392.537 | 263522 | 10.595 | 6.36E+C9
7.25E+09 | 196.017 | 240289
240129 | 44.552 | 3. 33E+10
3.41E+10 | | 400.269 | 212525
212366 | 1.653 | 1.C5E+C9 | 1 4 | 405.394 | 179286
178992 | 1903.000 | 5.3AE .CH
8.91F + 11 | | 392.537 | 263060 | 13.809 | 8.57E+09
8.41E+09 | 396.042
396.068 | 239951 | 50.790 | 3.5AE -10
3.89E +10 | | 400.317 | 212208
20597C | 1.473 | 7.95E+C8 | | 405.420 | 178823 | 1000.C00
620.000 | 8.91E+11
5.35E+11 | | 372.563 | 262722 | 13.572 | 8.136+09 | 396.113 | 239655
239484 | 34.552 | 4.23E+1C
2.33E+10 | | 430.687 | 209757
209625 | 1.037 | 5-13E+CR
5-87E+C8 | 1 4 | 405.491 | 178360 | 49.500 | 7.19E+10
0.05E+11 | | 392.634 | | 13.274
13.285
12.757 | 8. C6E+05
8. 21E+09
7. 84E+09 | 396.165
396.210 | 239313 | 17.347 | 3.44F+C9
1.13E+10 | | 400-754 | 209324 | - 560 | 4.90E+CA | 4 | 405.547 | 178927 | 520.000 | 7.21F.11
8.91F.11 | | 392-686 | 2e20#6
261787 | 12.757 | 7.84E+09 | 296, 235
396, 261 | 231846
238665 | 17.177 | 1.165+10 | - 1 | 430.806 | 208983
208532 | 21.503 | 5.13E+C# | 4 | 4C5.e12 | 177572 | 1000.0CD | 8.91E-11 | | 192.757 | 261590
261418 | 12.724
12.438 | 7. 63E+09
8. 27E+09 | 396.306 | 238367 | 16.494 | 1.07E+10 | | 400.898 | 208373 | 30.000 | 1.596+10 | ۱ ۵ | 405. ART | 177115 | 1000.000 | 8.91E+11
8.91(+11 | | 192. 629 | 261118
260948 | 13.390 | | 396.337
396.358 | 238199
238029 | ED-533 | 7.85E.C9
6.72E.10 | ı | 431.239 | 2C6123
2C5952 | .473
.473
.763 | 2.68E+C8 | 2 | 405.7C#
405.734 | 176954 | 1000.000 | 8.91F+11 | | 192.881 | 260775 | 12.967 | 8.COE+09
8.51E+C9 | 396.433 | 237734
237566 | 73.448 | 6.02E+1C
5.59E+10 | ì | 401.291 | 205782 | -643 | 3-646+08 | 1 | 405.779
405.804 | 176504 | 1000.000 | 8.91F+11 |
 192.926
192.952
192.978 | 760114 | 13.390 | 8.30E+C9
8.23E+09 | 396.454 | 237399
237108 | 55.902 | 5.37E+10
4.35E+10 | | 431.479
402.117
432.142 | 204541 | 17.630
16C-000
226-000 | 1.10E+10
1.23E+11 | 1 4 | 405.829
405.874 | 176181 | 1300.000 | 8.92F+11 | | 393.023 | 255851 | 14.917 | 9.38E+09
L-C9E+10 | 396.524 | 236942
236776 | 53.005 | 4.08E+10 | ì | 432-167 | 200184 | 35.902 | 1-815411 | | 05.899
405.925 | 175736 | 1000.000 | 8.976+11 | | 373.C49
393.075 | 259516
259522 | 19.237
20.464
22.333 | 1.25E+10
1.35E+10 | 396.595 | 236485
236318 | 61.071 | 4. MZL+10
5.16.10 | - 1 | 432.211 | 199738 | 16.003 | 7.34E+10
9.81E+09 | 4 | 405.970 | 175290 | 1000.000 | 6.926+11 | | 373.120 | 255222 | 22.333 | 1.49E+10
1.43E+10 | 396.647 | 236151 | 3.864 | 2-186-09 | - ! | 402.263 | 195431 | 25.000 | 4.94E-10
1.58F-10 | Ι, | | 1.5124 | . 300,000 | | | | | | | | | | | ı | | | | | L_ | | | | | | *1 meter = | 0.3048 feet | | | | | | | | | | | | | | | | | *1 meter = 0.3046 |eet | ELAPSED | ALTITUCE | , CURRENT, | ELECTREN
DENSITY. | | FSED | ALTITUSE | , CURPENT, | ELECTRON
DENSITY.
ELECTRONS | | ELAPSED
TIPE, | ALTITUDE
FEET | , CURRENT, | ELECTRON
DENSITY,
ELECTRONS | | EL APSED | ALTITUDE
FEET | , CURPENT, | ELECTRON
DENSITY,
ELECTRONS | |-------------------------------|--------------------------------------|----------------------------------|--|------------|-------------------------|------------------------------|----------------------------|--|---|---|-------------------------------|--------------------------------------|--|---|-------------------------------|--------------------------------------|----------------------------------|---| | SECCNOS | FEET
(m) | HICHGAMPS | ELECTRONS
PER CUBIC
CENTIMETER | | ONDS | FEET
(a) | | PER CUBIC
CENTIMETER | | SECTION | (a) | | PER CUBIC
CENTIMETER | | SECONDS | 199411 | 16.700 | PFR CUBIC
CENTIMETER
9.918+C9 | | 349.649
389.675
389.702 | 281834
281666
281458 | .763
.733
.723 | 4.CDE • C8
3.84E • C8
3.79E • CP | 393 | .123
.149
.176 | 25 9201
25 9033
258865 | 21.535
21.692
20.464 | 1.35E+1C
1.36E+10
1.27F+10 | | 396.558
396.624
396.650 | 236464
236297
236130 | 71.037
77.317
2.731 | 5. 85E+10
1.48E+09
6.97E+C8 | | 402.409
402.409
402.435 | 199119
198490
198324 | 65.000
650.000
765.000 | 4.27E+10 | | 399.747
389.772
389.797 | 281208
281071
280908 | .700
.730 | 3.69E+08
3.64E+08 | 393
393 | • 221
• 247
• 272 | 258573
258409
255270 | 17.630
16.224
14.294 | 1-08E+10
9-81E+C9
8-52E+C9 | | 396.655
396.721
396.747 | 235839
235673
235507 | 1.275
1.166
1.217 | 6.38E+C# | | 402.505 | 198158
197866 | 1000.000 | 6.40E+11
8.54E+11
8.53E+11
8.53E+11 | | 389.642 | 280622 | .783 | 4.10E.C8
4.32E.CR
4.32E.CR | 313 | .317
.343
.369 | 257982
257815
257649 | 12.331
11.469
14.417 | 7.24E+09
6.68E+09
8.61E+09 | | 396.792
396.818
396.843 | 235243
235079
234914 | 1.251
1.955
1.153
56.241 | 6.86E+(P
1.07E+09
6.32E+08 | | 402.531
402.557
402.602 | 197698
197530
197235 | 710,000
430,000 | 5.90E+11
3.42E+11 | | 389.893
389.538
389.964 | 28C292
28C002
279836 | .823
.783
.843 | 4.11E+C8 | 393 | 414 | 257358
257192 | 24.942 | 1.59E+1C | | 396.888
396.914
396.940 | 234624
234457
234290 | 56.241
39.041
32.767 | 4.04E+1C
2.65E+10
2.17E+1C | | 402.628
402.653
402.698 | 197067
196900
196603 | 28.500
58.000
27.500 | 1.75E+10
3.77E+10 | | 389.989
390.034
390.060 | 27967C
279379
279212 | .807
-827
-827 | 4.32E+CB | 393 | .465
.10 | 257026
256734
256566 | 31.259
32.323
31.575 | 2.05E+10
2.13E+10
2.08E+10 | | 390.985 | 232997
233831 | 48.415 | 3.39E+1C
5.39E+1C | | 407.724 | 196431
196234
195934 | 20.200 | 1.216.10
1.586.10
3.536.10 | | 390.130 | 279045 | .813 | 4.26E+C8 | 393 | - 562
- 667 | 256397
256101
255932 | 29.588
26.076
24.942 | 1.676+10
1.595+10 | | 357.036
357.081
357.107 | 233664
233371
237202 | 81.965
56.286
99.624 | 6.24E+10
7.52E+10
7.82E+10 | | 402.750
402.822
402.847 | 195766 | 54.530
51.030
385.000 | 3.28E+10
3.03E+11 | | 390.156
390.183
390.228 | 278578
278436
278109 | .823
.643
.913 | 4.32E+CP
4.42E+CB
4.79E+CB | 1 797 | .637
.659
.704 | 255762 | 21.692 | 1.36F+10
1.14F+1C | | 397.133
357.178 | 233033
232737
232568 | 102.312
.988
1.169 | 8.06E+1C
5.44E+C8
6.43E+C8 | | 402.892
402.918
402.544 | 195363 | 485.000
695.000 | 3.89E+11
4.94E+11
5.88E+11 | | 390.253
390.278
390,323 | 277929
277762
277667 | .913
.903 | 4.79F+CB
4.74E+CB | 393 | .730
.755
.800 | 255297
255103
254838 | 19.089
23.167
29.762 | 1.18E+10
1.47E+10
1.94E+10 | | 397.279 | 232400 | . 955
. 957 | 5.26E+C8 | | 402.989 | 194965
194670
194502
194334 | 1000.000
1000.000
1000.000 | 8.49E • 11
8.48E • 11
P.48E • 11 | | 390.349 | 277296
277126 | .643
.913 | 4.43F+08
4.806+C8 | 373 | . 826
. 851 | 254640
254472
254177 | 31.259
31.259
31.575 | 2.06E+10
2.06E+10
2.04E+10 | | 397.299
397.324
397.368 | 231928
231763
231471 | .703
.867
27.003 | 3.86E+C8
4.74E+08
1.74E+1C | | 403.041
403.086
403.117 | 194642 | 1000.000 | 8.48E+11 | | 390.42C
370.446
390.471 | 276828
276659
276490 | .943
.943 | 4.56E+CB
4.56E+CB
5.17E+OB | 393 | 922 | 254J08
253839 | 32.323 | 2-136-10 | | 397.394 | 231302
231133
230836 | 35.100
38.100
45.000 | 2.34E.10
2.57F.10
3.10E.10 | | 403.137
403.182
403.208 | 193712
193473
193256 | 202.030
123.000
89.600 | 1.49E+11
8.39E+10
6.03E+10 | | 390.516
390.541 | 276197
276031
275866 | 1.003
.963 | 5.27E.08
5.06E.C8 | 394 | . 593
. 019
. 044 | 253546
253379
253213 | 32.323
32.767
32.621 | 2.13E.10
2.17E.10
2.16E.10 | | 397.464
357.490
397.516 | 230666 | 54.503 | 3.87E+10
3.99E+10 | | 403.234
403.279
403.305 | 193091
192827
192662 | 91.000 | 5.36F+10
6.19E+10
6.33E+10 | | 390.610 | 275573
275402
275231 | .910
.923 | 4.80E.C8
4.85E.CR
5.17E.C8 | 394 | . C # 9
• 115 | 252923
252759
252593 | 33.480
33.619
33.340 | 2.22E+10
2.23F+10
2.21F+10 | | 397.561
397.587
397.612 | 230157
230028
229859 | 73.503
83.003
85.003
58.503 | 5.46E+10
6.28E+10
6.45E+10 | | 473.330 | 197498 | 77.000
620.000 | 5.065.11 | | 390.662
390.707
390.733 | 274933
274762 | 1-013 | 5.33E+CP
5.49E+CP | 394 | .184
.209
.234 | 25230R
252148 | 31.867 | 2.10E+10
2.00E+10 | | 397.657
397.683 | 229563
229392
229221 | 95.003
102.003 | 7.04E+16
7.32E+10
7.95E+10 | | 403.426
403.471 | 192044
191879
191588 | 695.000
1000.000
1000.000 | 5.72E+11
8.46E+11
8.45E+11 | | 390.759
390.804
393.829 | 274579 | 1-13) | 5.45F+08
5.96E+08
6.33F+CP | 394 | . 275 | 251989
251733
251569 | 27.379
28.500
30.000 | 1.77E+10
1.85E+10
1.96E+10 | | 397.754 | 228910 | 95.000 | 7.63E+10
7.31E+10 | | 403.477 | 191422
191256 | 1000.000 | 8.45E+11
8.45E+11
8.45E+11 | | 390,854
390.898 | 274119
273955
273664 | 1.213 | 6.38E+CA
6.39E+CA
6.25E+CA | 394 | . 329 | 251404
251116
250951 | 30.500
34.300
39.000 | 2.00F • 1C
2.78F • 1C
2.64F • 1C | | 357.806
377.651
357.877 | 228569
228271
228099 | 65.000
74.253
60.753 | 0.43E+10
5.50E+10
4.37E+10
3.57E+10 | | 403.567
403.593
403.619 | 190963
190794
190524 | 1900.000 | P.456+11
R.446+11 | | 390.924
390.950
393.995 | 273495
273326
273031 | 1.184 | 6.48F+08
6.23E+08 | 394 | .400
.425
.470 | 250785
250495 | 43.000 | 2.96E+10
3.37E+10 | | 397.904 | 227928
227631
22763 | 51.003
95.493
100.503 | 3.57E+10
7.33E+10
7.77E+10 | | 403.644
403.690
403.716 | 190329
190159
189987 | 710.000
1000.000
765.000 | 5.85f • 11
8.44f • 11
6.34F • 11 | | 3+1.071
391.047
391.092 | 272863
272696
272404 | 1.207
1.251
1.246 | 6.60E+CB
6.50E+CB | 394 | .496
.521 | 250329
250162
249370 | 43,000
41,000
33,000 | 2.56F.1C
2.80F.10
2.18E.10 | | 399.001 | 227294
22730C | 112.392 | 8.85E+1C
9.57E+1C
1.06E+11 | | 403.761
403.787
403.812 | 189665
189496
189328 | 215.000
163.030
71.009 | 1.60F-11
1.15E-11
4.71E-10 | | 391.118 | 272404
272238
272073
271785 | 1.444 | 7. C9F+CF
7. 64E+CB
8.82E+OB | 394 | . 592
. 617 | 249703
249535
249236 | 32.000
30.500
28.500 | 2.116+10
2.006+10
1.856+10 | | 3/8.072
198.098
3/9.143 | 226833
226666
226375 | 131.795
141.432
110.235 | 1.05F+11
1.15F+11
8.62F+10
6.74F+10 | | 403.857 | 189034 | 710.000 | 5.84E • 11 | | 391.188
391.214
351.279 | 271621 | 1.617 | 8.52F+C8 | 394
394 | -690
-717 | 249059
248887 | 28.500
21.500
16.790 | 1.85F +1C
1.35E +10
1.03F +10 | | 398.169
398.194
398.239 | 226210
226045
225757 | 89-125
34-291
13-093 | 2.26E+10 | | 403.908
403.953
403.979 | 198698
188405
189236 | 1000.000 | P. 43E • 11
B. 43E • 11
B. 42E • 11 | | 391.284
391.316
191.336 | 271194
271028
270861
270570 | 1.732 | 8.79E+CR
9.11E+CR
5.39E+CB | 394 | .763
.769
.815 |
248563
248392
248227 | 34.634 | 2.32F+10
2.31F+10 | | 198.205 | 225616
225450
225161 | 5.02+ | 2.84E+09
2.Cef+C5
4.65E+10 | | 404.005
404.049 | 189068
187779
187519 | 1000.000 | 8.42E+11
8.42F+11
8.42F+11 | | 391.407 | 270570
270403
270235 | 1.645 | 8.67E+C8
8.58E+C8
9.55E+(8 | 394 | .865
.886
.110 | 247924
247755
247586 | 50.405
49.224
48.003 | 3.58E · 10
3.48E · 10
3.39E • 10 | | 378.336
398.362
318.387 | 224956
224831 | 64.593
74.702
81.965 | 5.48F • 10
6.09E • 10 | | 404.099 | 187458 | 17.200 | 8.42E+11 | | 341.433
341.478
391.504 | 269943
269777
269610 | 1.843 | 9.70f.(8
9.(8E+G8
1.00E+39 | 1 794 | .956
.982
.CCA | 247289
247119
246748 | 39.424
38.671
35.895 | 2.68E • 10
2.62f • 10
2.41E • 10 | | 358.432
318.458 | 224540
224372
224205 | 99-624
109-187
115-089 | 7.61E+10
8.45E+10
8.58E+10 | | 404.269
404.364
404.391 | 186407
185777
185600 | 65.000
455.000
1000.000 | 4.29E • 10
3.61E • 11
8.41E • 11 | | 371.574
371.600 | 269318
269151 | 2.082 | 1.10E+09
1.19E+09 | 399 | .053 | 246649 | 34.788
35.895 | 2.32F.10
2.41±1C | | 398.484
398.529
399.555
358.580 | 223911
223745
223577 | 128.237
137.564
16.494 | 1.02F+11
1.10E+11
1.01E+10 | | 404.436
404.461
404.486 | 185310
185152
184988 | 1000.000 | P.40E+11
8.405+11
8.40F+11 | | 391.625
331.670 | 268983
268638
268518 | 2.192
2.087
2.593 | 1.156.09
1.106.09
1.366.09 | 399 | 105
157
176 | 246309
246009
245838 | 37.004
35.649
27.952 | 2.49E+1C
2.39E+10
L.82E+1C | | 398.626 | 223280 | 29.235
85.647 | 1-886+1C | | 404.531
404.557
404.584 | 184526
184355 | 1000.000 | 8.40E+11 | | 391.772 | 268348
268025
267857 | 2.627
3.667
2.799 | 1.37E+C9
1.60F+C9
1.47E+09 | 1 1 395 | . 207
. 247
. 273 | 245567
245370
245201 | 18.791
23.510
28.511 | 1.17E+10
1.50E+10
1.66E+10 | | 198.679 | 222930
222627
222434 | 41.526
28.500
14.200 | 2.79E • 10
1.83E • 10
8.61E • C9 | | 404.629 | 184059
183893
183727 | 1 203.000 | 8.40E+11
8.40E+11
7.12F+C8 | | 391.79?
391.818
391.863 | 26768R
267393 | 3.507
3.631
3.507 | 1.046+04 | 395 | . 343 | 245032
244735
244564 | 21.850
33.057
50.581 | 1.38F+10
2.19E+10
4.09E+10 | | 398.751
398.776
398.776
398.771
358.847 | 222265
22177C
221802 | 21.503
13.003
42.003 | 1.35E.1C
7.83E.09
2.82E.10 | | 404.679
434.724
404.750 | 183727
183433
183250 | 3.300
.860
.670 | 1.88E+09
4.86F+C8
3.79F+CF | | 391.889
391.915
391.960 | 267224
267055
266755 | 3.235 | 1.84E.C9
1.69F.09
1.76F.C9 | 399 | .369
.395 | 244394 | 64.230 | 4.62E+1C | ŀ | 378.872 | 221634 | 64.000
7.300
28.500 | 4.55E+1C
4.23E+09
1.82E+10 | | 404.821
404.871
404.516 | 182782
182449
182153 | 1000.000
147,000 | 3.67F+CP
8.39E+11
1.05F+11 | | 391.9A6
392.012
392.057 | 266591
266423
266130 | 3.302 | 1.73F+C5
1.54E+09
2.07F+09 | 395 | .466
.491 | 243927
243758
243461 | 58.273
55.902
44.999 | 4.23F+10
4.03F+10
3.13F+10 | | 399.164
399.209
349.215 | 21973F
219449
219283 | 16.503 | 6.23F.C9 | | 404.942
404.568 | 181783
181817 | 1000.000 | 8.39E+11
8.39E+11
8.19E+11 | | 392.083
392.108 | 265964 | 3.523
4.574
6.118
6.594 | 2.446.09
3.336.09
3.616.09 | 395 | .567
.589
.633 | 243291
243120
242820 | 3A.313
34.788
33.756 | 2.59E * 10
2.32E * 10
2.24E * 10 | ļ | 399.261
399.305
399.329 | 219143
218559
218703 | 18.703
8.503
3.203 | 1.15E +10
4.97E +05
1.79E + 09 | | 405.011
405.019
405.064 | 181345 | 1300.000 | 8.39F+11 | | 372.153
372.179
192.205 | 265505
265343
265177 | 7.947
8.351 | 4.676+09 | 39 9 | . 659
. 686 | 242649
242-75
242175 | 35.895
45.313 | 2.40F • 1C
3.23E • 1C | | 399.354 | 21 8547
21 827C
21 6676 | 61.507
11.143
1.450 | 4.31E+10
6.63E+09
8.07E+08 | | 405.109
405.125
405.141 | 180709
180709 | 1900.000
255.030
1.370 | #.396 • 11
1 • 936 • 11
7 • 786 • CB | | 392.250
342.276
392.301 | 264788
264749
264586 | 6.567
6.742
6.667 | 3.66F+09
3.73E+09
3.66F+09 | 39 | .731
.757 | 24230r
241937 | 53.882
55.563
49.415 | 3.86E+10
4.00F+10
3.41E+10 | | 399.611
349.637
399.687
199.708 | 216706
216408
216236 | 3.51)
5.600 | 1.98E+C9
3.21E+09 | | 405.206
405.211
405.256 | 180241
180074 | 1.090 | 7.78E • C8
7.38 • C8
6.19F • C8
6.82F • C8 | | 392.372 | 264295
264129 | 6.247
7.307
7.389 | 3.41E+09
4.C4F+09
4.C9E+09 | 395 | . 827
. 853
. 878 | 241373
241373 | 51.170
73.862
64.230 | 3.63E+10
5.58E+10
6.74E+10 | | 349.735 | 216064 | 28.500
35.900
19.850 | 1.818+10
2.34F+10
1.23E+10 | | 405.301 | 179601 | 1000.000 | 9.81F+0#
8.39F+11 | | 392.398
392.443
392.469 | 263669
263501 | 9.703 | 5.52F+09
5.54E+09 | 1 395 | 923 | 240907
240736
240566 | 62.832
58.293
53.882 | 4.67E+1C
4.23E+1C
3.86E+1C | | 399.803
399.827
430.176 | 21560C
215442
213137 | 16.550
133.000
2.650 | 1.04E+1C
1.02E+11
1.48E+09 | | 405.397 | 178971
178901
179633 | 1000.600
1000.000
1000.000 | 8.39E • 11
8.39E • 11
8.39E • 11 | | 372.495
372.540
372.566 | 263333
263039
26287C | 11.686
13.180
13.80 | 6.77E+09
7.74E+09
8.16E+09 | 396 | .020 | 240254
240099 | 54.552
54.869 | 3.915+10 | | 400.202 | 212967
212796
212505 | 3.203 | 1.80E • 09
2.32E • 09
1.24E • C5 | l | 405.520
405.520 | 178339
178173 | 175.030
1000.000 | 1.28E *11
e.39E *11
8.39E *11 | | 392.557
192.637
392.663 | 262701
262465
262235 | 12.544
13.193
12.651 | 7.23F.09
7.75F.09
7.40F.09 | 394 | .071
.116
.147 | 239633
239633
239463 | 58.617
63.542
5.635 | 4.67E+10
3.16E+09 | | 430.272
430.296
400.320 | 212346 | 2.223
2.753
1.503 | 1.54E+C5
8.35E+OB | | 405.616 | 177717 | 1000.000 | 8.396+11
8.39E+11 | | 392.689 | 2620e5 | 17.544 | 7.34E+09
6.92E+09
7.63E+09 | 396 | 213 | 239292
238994
238925 | 20.922
20.922
23.338 | 1.326.10 | | 400.320
430.712
400.853
400.877 | 209603
208670
208517 | 2.080
25.450 | 3.56F+C8
1.16E+09
1.58F+10 | | 405-641
405-686
405-712 | 177386
177398
176934 | 1000.000 | 8.39E • 11
8.40F • 11
8.40F • 11 | | 392.760
192.767
392.612 | 261368
261396
261357 | 13.0°4
13.393
13.923 | 7.99E+C9
8.25E+09 | 396 | 264
309 | 238644 | 22.171 | 1.40F+10 | 1 | 401.242 | 208353
206102 | 216.003
.473
1.667 | 1.70E+11
2.e1E+08
1.C4E+C5 | | 405.737
405.782
405.807 | 176769 | 1000.000 | 8.40F +11
8.40E +11
8.40F +11 | | 392.858
312.484 | 260927
260757
260461 | 13.393
17.807
13.289 | 7.905+09
5.185+09
7.845+09 | 396 | • 335
• 361
• 406 | 238178
238008
237713 | 19.540
90.421
83.217 | 1.22E+10
7.04E+10
6.38E+10 | | 401.456
401.482
402.120 | 204690
204519
200325 | 34.604 | 2.18E.10
7.55E.10 | | 405.932 | 176322
176161
175878
175716 | 1000,000 | 8.40F+11
8.40F+11 | | 392.955 | 260293 | 13.807 | P. 195 * C 9 | 396 | 432
457 | 737546
237379
237087 | 80.075
75.128
63.868 | 6.10F+10
5.66F+10
4.68E+10 | | 402.145
402.170
402.214 | 200163
200002
199717 | 175.000
29.203
41.000 | 1.29E+11
1.79E+10
2.59E+10 | | 405.928
405.928 | 175553 | 1000.000 | 8.41F+11
8.41F+11
8.41F+11 | | 393.026
373.052
393.078 | 255830
259662
255495 | 17.773
19.693
21.226 | 1.09E+10
1.22E+10
1.32E+10 | 396 | . 52A | 236921
236755 | 62.478 | 4.57E+10
4.68F+10 | | 402.240 | 199551 | 85.G07 | 5.726.10 | | 405,000 | 1751(0 | 1000.000 | 9.416+11 | | | | | | | | | | | | | _ | | | J | | | | | | APSED
THE .
CCNDS | FEET (a) | CURRENT,
HICROAMPS | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
GENTIMETER | ELAPSED
TIPE,
SECONOS | ALTETUDE,
FEET
(a) | CURRENT, | ELECTRON
DENSITY,
ELECTRONS
PER CUPIC
CENTIMETER | ELAPSED
TIPE.
SECCNOS | ALTITUDE
FEET
(a) | , CURRENT,
HICRDAMPS | ELECTPCH
DENSITY.
ELECTRONS
PER CUBIC
CENTIPETER | ELAPSE
TIPE,
SECONO | . FEST | E. CURMENT.
MICROAMPS | ELECTR
DENSIT
ELECTR
PER CU
CFATIM | |-------------------------|----------------------------|--------------------------------------|--|-------------------------------|----------------------------|----------------------------|--|-------------------------------|----------------------------|----------------------------|--|----------------------------|----------------------------------|--------------------------|--| | 9.653 | 281813 | • 780 | 4.03E+C8
3.62E+C8 | 393, 153
393, 179 | 259012
258844 | 26.465
21.338 | 1.62E+10
1.41E+10 | 396.653 | 236109
235016 | 3-122 | 1.698+09 | 402.43 | | 1000.000 | 8-116+ | | | 281645
281477
261188 | .703
.723
.763 | 3.72E+C8
3.93E+C8 | 393.224 | 258553 | 14-940 | 1-12E+10 | 176.698
196.724 | 235552
235512 | 1.393 | 7.47E+C8 | 402.50 | 197845 | 1000.000 | 8.116+ | | 9.750 | 28105C | .813 | 4.18E+C8 | 393.275 | 258250 | 17.630 | 1.03E+10
8.58E+09 | 396.750 | 235223 | 1.698 | 1.046+69 | 402.58 | 197508 | 1000.000 | 8.10E+ | | 9.801 | 280888
280601 | .800 | 4-13E+08
4-44E+C8 | 393, 320 | 257961
257795 | 13.572 |
7.74E+09
7.23E+09 | 396. 921 | 23505E
234894 | 3.530 | 1.91E+09
9.83E+69 | 402.60 | 1 197046 | 245.000 | 8.C9E+ | | 9.871 | 28043£
280271 | .900 | 4-455-68 | 393.372
373.417 | 257628
257337 | 27-630 | 1.036.10 | 396.917 | 234604 | 47.167 | 4.10E-10 | 402.65 | 196879 | 189.000 | 2.33E. | | | 279982
279816 | .863 | 4-44F+CR | 393.443 | 257171 | 31.731 | 1.98E+10 | 376.943 | 234269
233977 | 37.004
56.581 | 2.34E+10
3.78E+10 | 402.72 | 8 196409 | 138.000 | 9.385 | | 9.967 | 279645 | .867 | 4.44E+CB
4.18E+CB | 393,468 | 257005
256713 | 33.619 | 2.12F+10
2.11E+10 | 397.014
397.039 | | 76-971
85-647 | 5.35E+1C | 402.75 | 9 195913 | 147.000 | 8.04E | | 0.037 | 27935e
279191 | .800 | 4-13F+C8 | 393.539 | 256544
256376 | 34.026 | 2.14E+10
2.08E+10 | 397.039
397.084 | 233644
233350 | 85.647 | 6.05E+10
7.47E+10 | 402.62 | 195745 | 138.900 | 9.376 | | 0.C88 | 279024
278728 | .862 | 4.44E+C8 | 373.610 | 256080
255911 | 30.774 | 1-735+10 | 397.110 | 233181 | 103.242 | 7.87E+10 | 432.89 | 195282 | 1000.000 | 4.03E | | 0.160 | 278557 | • 913
• 933 | 4.59E+C8 | 393.626
393.662
393.707 | 255911
255741
255445 | 25.692 | 1.57E+1C | 397.181 | 232716
232547 | 82.783
.807 | 5.61E+10
4.36E+C8
7.01E+08 | 402.94
402.94 | 1 195117
7 194944
7 194649 | 1000.000 | 8.03F | | 186 | 276385
276088 | - 963 | 4.70E+C8 | 393.707 | 255445
255276 | 20.620 | | | 232547 | 1.303 | 7.01E+08 | 402.99 | 194649 | 1200.020 | H.CSE
8.04E | | 256 | 2779CB | .963
.963 | 4.95E+C8 | 393.733
373.758
393.803 | 255082 | 28.676 | 1.34E+10
1.78E+10
2.03E+10 | 397.222 | 232379 | 1.181
.973 | 6.38F+C8
5.24E+C8 | 403.04 | 4 194314 | 1000.000 | 0.04F | | . 326 | 277446 | .963 | 4.95E+C# | 393.829 | 254787
254619 | 11-460 | 2-10E+10 | 357.302
357.327 | 2319CB
231742 | 1-530 | 5.566+C8 | 423-11 | 193056 | 1000.000 | 8.046 | | . 352 | 277275 | 1.003 | 4-95E+CE
5-16E+CE | 393.854 | 254451
254156 | 33.619 | 2.11E.10
2.15E.1C | 397.371
397.397 | 231450
231281 | 41.000 | 2.63E+10
3.24E+16 | 403-14 | 193691 | 1000.000 | 6.03E | | | 2768C7
276638 | 1.017 | 5.21E+C8
5.78E+C8 | 393.925 | 253987
253418 | 34.929 | 2.20E+10
2.17F+10 | 397.422 | 231112 | 46.503
55.003 | 3.02E+10
3.72E+10 | 403-21 | 1 193236 | 1000.000 | 9.03E | | . 474 | 276469 | | 5+36E+GP | 397.996 | 253525 | 34-478 | 2.19E+10 | 397.493
397.519 | 230644 | 6C.003 | 4.C2E+1C 1 | 403.23 | 192806 | 1000.000 | 8.03E | | .519 | 276176
276010
275845 | 1.073 | 5-12E+C8 | 394.022 | 253358
253192 | 33.993 | 2-14E+10 | 357.564 | 230474 | 83.003 | 4.56E+10 | 493.30 | 192642 | 1000.000 | 8.03E | | . 569 | 275845 | 1.093 | 5.62E+08
5.42E+08 | 394-092 | 252902
252737 | 34.788 | 2.19F+1C
2.17F+10 | 397.540 | 23G007
229836 | 93.000 | 5.95E+10
6.59E+10 | 403.37 | | 1000.030 | 0.035 | | 964- | 275381 | 1 - 04 1 | 5.36E+08 | 394.143 | 252572
252572
252288 | 34.004 | 2.18E.1C | 397.660
397.660 | 229541 | 109.000 | 7- ##F+1C | 403.42 | 9 191856 | 1000.000 | 8.026 | | .710 | 275210 | 1.012 | 5.31E.C8 | 394.212 | 2522##
25212# | 31.619 | 2.115.10 | 357.712 | 229371 | 95.200
54.007 | 0.74E -10 | 1 403-47 | 191548 | 1000.000 | 8.CSE | | .736 | 274741 | 1.160 | 5-58E+C8
6-24F+C8 | 394.237 | 251969
251713 | 29.412 | 1.828+10 | 357.712 | 228465 | 102.003 | 7.29E • 1C | 403.50
403.52
403.57 | 191235 | 1000.000 | 8.02E | | . BC7 | 274263 | 1.373 | 7. C6F+C8 | 394.307 | 251544 | 32.500 | 2.03E+1C | 377.7A3
357.809 | 228548 | 91.002 | 6.41E+1C | 403.59 | 190772 | 1000.000 | 4.05 | | .612
.857 | 274599
273934 | 1.323 | 7.57E+C# | 394.332 | 251384
251095 | 41.530 | 2.11F+1C
2.68E+10 | 357.855 | 228249
228076 | 67.003 | 5.43E+1C
4.54F+1G | 403.67 | 7 190603 | 1000.000 | 8.026 | | 901 | 273643 | 1.554 | 8.COE+C8
7.75E+C8 | 394.403
394.428 | 250930 | 49.000 | 3.17E .1C
3.55E .10 | 157.9C7 | | 61.503
95.493 | 4.125.10 | 403.69 | 44 (09) | 1000.C00
1000.000 | 8.025 | | 927 | 273305 | 1.505 | 7.361.08 | 394.473 | 250764 | 53.000 | 3.78F + 1C | 357.907
337.552
347.978 | 227610 | 100.137 | 6.75E+1C
7.6QF+10 | 403.71 | 4 184544 | 1000.000 | F.026 | | .958 | 273010 | 1.353 | 6-5 TE+CA | 394.499 | 250308 | 53.000 | 3.556.10 | 399.004 | 227273 | 115.752 | 8.396+10 | 403.79 | 189327 | 1000.000 | A. CZE | | .050 | 272675
2723#3 | 1.387 | 7.15E+C8
7.75E+C8 | 394.559 | 249849 | 39.000 | 2.496+10 | 374.075 | 226812 | 141.432 | 1.05F · 11 | 403. Pb | 189013 | 1000.000 | 8.CZE | | -121 | 27221A | 1.505 | 8.356.08 | 394.620 | 249515 | 37.200 | 2.C7F+10 | 398.146 | 226354 | 117.392 | 1.07E+11
8.09E+10
4.83F+10 | 403.51
403.95 | 109845 | 1000.000 | 8.056 | | .146 | 272053 | 2.238 | 1.01E+09
1.15E+09 | | 249214 | 31.600 | 1.935.10 | 398.172 | 226189 | 71.637 | 2. NIF+10 | 403.95 | 188584
188215 | 1000-000 | 8.02E | | .217 | 271600 | 2.238
2.575
2.492 | 1.326.09 | 394.653
374.720 | 249037
24860
248642 | 30.250 | 1.705 - 10 | 358,197
398,242 | 226025
225736
225556 | 8-562 | 4.86[+09 | 404.00 | 188047 | 1000.000 | 8.036 | | . 297 | 271436
271173 | 2.437 | 1.256+09 | 394.792 | 248371 | 21.692
36.708 | 1.30E+10
2.33E+10 | 378.268
398.254 | 225430 | 8.562
8.241
4.094 | 2.26E.CS | 404.C7 | 1 187598 | 1000.000 | 8.02F | | . 313 | 271007
270840 | 2.363 | 1.325.69 | 394. 819
394. 863 | 247200
247903 | 56.581
62.478 | 3.82E+10
4.28E+10 | 398.339 | 225140
224975 | 79.605
89.125
95.493 | 5.47E+10
6.20E+10 | 404-10 | | 1000.000 | 8.02E | | - 384 | 27C362 | 2.463 | 1.265.09 | 394.889 | 247734 | 58.637 | 3.98E+1C
3.79E+10 | | 224810 | 95.493 | 6.7GE • 1C | 404.27 | 166379 | 710.000 | 5.576 | | .410 | 225214 | 7-413 | 1.236+09 | 394.914 | 247565
247268 | 56.241 | 3.43F+10 | 398.435
358.461 | 224519 | 112.392 | 5.05E .10
6.26E .1C | 404.29 | 2 185925 | 430.000 | 3. 25E | | -461 | 269522
269756 | 2.343 | 1.206.09 | 394.985 | 247097
246927 | 49.224 | 3-256-10 | 395.487 | 224184 | 126.237 | 1.046.10 | 404.36 | 185755 | 1000.000 | M+026 | | .532 | 265589
269297 | 2.852
3.324 | 1.46E+09
1.70E+C9 | 395.056
395.082 | 246628 | 44-101 | 2.87E+10 | 348.558 | 223724 | 152.807 | 1.146+11 | 404.43 | 185296 | 1000-000 | 8.026 | | FOA - | 269130
268962 | 3.554 | 1-816+09 | 195.108 | 246457
246286
245988 | 45.441
48.003
45.880 | 2.97E+10
3.16E+10 | 398.629
398.656 | 223258
223083 | 15.172 | 8. C5E • C9 | 404.40 | 185132 | 1000.000 | 8.02F | | . 628
. 673 | | 3.811 | 1.55E+G9
2.10E+C9 | 395.153 | 245817 | 45.880 | 3.00E • 10
1.18E • 10 | 399-682 | 222908 | 63.865 | 4.26E.LO | 404-53 | 184675 | 1000.000 | 8.02E | | .699 | 268497 | 4.260 | 2-196-09 | 395-205 | 245646 | 21-684 | 1.44E+10
2.03E+10 | 398.728 | 22260t
222412 | 24.007 | 1.456+10 | 404.58 | 184534 | 1000.000 | 8.C2E | | .770 | 268004 | 4.894 | 2.54E+09 | 395.276 | 245180 | 32.473 | 1.836.10 | 358.779 | 222244 | 14.607 | 8.54E . C9 | 404.65 | 7 181872 | 385.000 | 2.A9E | | .796
.821 | 26783£
267667 | 4.894 | 2.52E.09
2.54E.09 | 395-301 | 245011 | 32.621 | 1.15F+10
2.04E+10 | 378.224 | 221949
221781 | 15.603 | 9.16F+09
3.45E+10 | 474.68 | 183706 | 22.500 | 2.54E | | - 844 | 267372 | | 2+66E+09 | 395.372 | 244543 | 00-437 | 4-59F+10 | 198.875 | 221417 | 75.003 | 5.C8E • 10 | 404.75 | 3 163228 | 2,200 | 1.226 | | .918 | 267203
267033 | 4.653 | 2.41E.09
2.54E.09 | 395, 198 | 244075 | 74.250 | 5.096.10 | 119.142 | 219882
219718 | 25.003 | A. 27E + CA
1. 51E+10 | 404.77 | 182762 | 1.5/0 | 1.746 | | 963
989 | 24673P
26657C | 4.464 | 2.316.09 | 395.469 | 243706 | 64.593 | 4.74F .1C | 399.212 | 219428 | 21.000 | 1.256.10 | 404.84 | 183627 | 481.036 | 3. 70E | | . [] 5 | 266402
266109 | 6.451 | 2 . 2 > E + 09 | 395.539 | 243440 | 51.918
47.167 | 1.46E+1C | 399.264 | 219122 | 23.600 | 1.42E-10 | 404.91 | 182132 | 5 P O . 000 | 5.326 | | .040
.296 | 265944 | 6.817 | 3-416-09 | 395.565 | 24 3099 | 41.081 | 3.10E.1C | 399.308
319.372
329.357 | 218683 | 16.003 | 1.06E+10
9.39E+C9 | 404.57 | 1 181791 | 1200-000 | 8.036 | | 111 | 265778 | 8.351
10.153 | 4.51E+C9
5.58E+09 | 395.637 | 242799 | 40.278 | 2-16F+1C | 399.400 | 218527 | 89-003 | 6.10E+10
6.60F+09 | 405.01 | 7 181324 | 1000.000 | F. D2F | | 182 | 265322
265156 | 11.034 | 6.115.69 | 395.689 | 242453 | 55.225 | 7.585.10
3.715.10
4.005.10 | 399.40C
339.614
399.640 | 216855 | 11.467 | 6.81E+C8 | 405.G6 | 7 181155 | 1007.000 | 8-025 | | . 253 | 264892
264728 | 9.00> | 4.90E+09 | 395.760 | 741 485 | 59.076 | 4.056.10 | 377.686 | 21t387 | 2.780 | 1.52F+09 | 405.13 | 1 150647 | 590.000 | 8. GZF | | . 279
. 364 | 284584 | 9.119 | 4.57E.09 | 395.785 | 241816 | 75.128 | 5.275.10 | 399.712
395.738 | | 45.000 | 1.5JE . 10
2.86E . 10 | 405.16 | LPO517 | 48.000
27.000 | 1.025 | | 349 | 264274 | 8. 351
8. 645
9. 472
9. 817 | 4.34E.C9
5.18F.C9 | 195-156 | 241352 | 79.605 | 5. e 3F + 10
4. 55E + 1C | 329.782 | 216043 | 19-103 | 1.136.10 | 405.21 | 180051 | 43.000 | 3.54 | | 401 | 264108
263941 | 9.817 | 5.376+69 | 395.841
395.926 | 241183
240986 | 69. 164 | 4-85E+1C | 349.830 | 215580 | 142-503 | 1.025.11 | 495.30 | 179580 | 61.500 | 2.625 | | 446
472
458 | 263648
263480 | 11.794 | 5.99E.09
6.58E.09 | 395.952 | 240715
240544 | 58.637 | 4.35E+1G
3.96E+1C | 400.179 | 213116 | 8.502 | 3.35E+09 | 401.35 | | 1000.000 | 8.02F | | 458
543 | 263018 | 13.572 | 7.68E+09
8.53E+09 | 396.023
396.049 | 240247 | 60.372 | 4-105-10 | 439.231 | 212775 | 5.202 | 2.89E.C9
1.76E.09 | 405.42 | 174780 | 1700.000 | A.025 | | - 569 | 262849 | 15-433 | 8.256+09 | 104-074 | 247078
239909 | 67-187 | 4.63E+10
5.06E+10 | 430.275 | 212327 | 3.203
1.613
1.323 | 5.87E+C# | 475-49 | 7 178118 | 395.000 | 2.976 | | 555 | 26268C
262383 | 14.665 | 8.37E+09
8.38E+09 |
396.119 | 239612 | 72.626 | 7-23F+09 | 400.323 | 209582 | -643 | 7.20E+C8 | 405.52 | 8 1779#A | 1000.000 | 8.03E | | 666 | 262214 | 14.665 | 8.14E.09
7.99E.09 | 396-171 | 239271 | 16.652 | 9.816+09 | 400.715
400.856
400.850 | 208492 | 17.203 | 1.016.10 | 405,59 | 3 177696 | 1000-000 | 8.035 | | .738 | 261744 | 13.927 | 7.926.09 | 396.242 | 238404 | 22.662 | 1+37E+10 | 430, 904 | 208334 | 77.000 | 5.076.10 | 435.64 | 177366 | 1000-000 | 8-03E | | .764 | 261547
261375 | 14.665 | 8.39E+05
8.71F+C9 | 396.267 | | 17-488 | 1.046+10 | 401.459
401.485 | 204669 | 9.235 | 2.56E • C8
5.23E • C9 | 405.08 | 177017 | 1000-000 | 8.03E | | .815 | 261075 | 16.652 | 9.456+09 | 396.338 | 238326
239156 | 19.540 | 1-175+10 | 401.485 | 204498 | 282.464 | 2.11E.11 | 405-74 | 176749 | 1063-630 | 8-035 | | -887 | 260736 | 10.224 | 9-136-69 | 396.402 | 237987
237692 | 89-125 | 6.90F+10
6.37F+1C | 402-123 | 200305 | 307.000 | 6.50E+1C
2.27E+11 | 405.78 | 176302 | 1002-030 | 8.C1E | | .932 | 260440 | 15.691 | 9.658+09 | 396,435 | 237525 | 53.217 | 5.89E +1C
5.49E+1C | 402-173 | 199982 | 235.003 | 1.69E+11
3.92E+10 | 405.63 | | 100.000 | 8.035
2.036 | | -584 | 260103
259809 | 17.347 | 1.018+10 (| 396.5C5
396.531 | 237066
236900 | 67.564 | 4.64E+10 | 432.243 | 199531
19939C | 120.007 | 8.C6E+10
1.37E+1C | 405.90 | 175695 | 1703.000 | R.C.)E | | .055 | 259641 | 23.68% | 1.25E+10
1.43E+10 | 396.556 | 236900
236734
236443 | 67.187
69.091
76.430 | 4.61E+10
4.76E+10 | 402.315 | 199098 | 102.000 | A-74F+10 | 405.93 | 175533 | 1000.000 | P. 036 | | -061 | 255474
255180 | 25.092 | 1.56E-10
1.58E-10 | 396.601 | 236443 | 76.430 | 5.34E+10
5.92E+10 | 472.412 | 198469 | 820.C00 | 6.5TE-11 | [| | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | ٦. | | | | | | | | | | |-------------------------------|----------------------------|----------------------------|----------------------------------|----------------------|----------------------------|----------------------------|----------------------------------|-----|-------------------------------|----------------------------|----------------------------|-----------------------------------|-------|-------------------------------|----------------------------|--------------------|--| | ELAPSED | ALTITUDE. | CUPRENT, | DENSITY. | ELAPSED | ALTITUDE | CURRENT, | DENSITY, | 1 | ELAPSED | ALTITUDE | CURRENT, | ELECTRON
DENSITY,
ELECTRONS | 1 1 | ELAPSED | ALTITUDE | . CURRENT. | ELECTRON
DEMSITY, | | SECCNOS | (e) | ICKOARPS | PER CUBIC | SECONOS | FEET
(a) | HICROAPPS | PER CUBIC | .] | TIME,
SECONDS | FEET
(m) | PICEC AMPS | PER CURIC | | TIPE.
SECCADS | FEET
(a) | MICROAMPS | PER CUBIC | | | | | CENTIPETER | | | | CENTIMETER | 빜 | | | | CENTIMETER | Į Ļ | | | | CENTIMETE | | 389.656 | 281792
281624
281456 | .643 | 3.25E+C8 | 393.156
393.182 | 258991
258823 | 33.057 | 1.99E • 10
1.97E • 10 | 1 | 396.656
396.702 | 236089
235796 | 4.500
2.923 | 2.42E.09
1.56E.09 | | 402.467
402.512 | 198117
197824 | 1000.000 | 7.82E+11
7.81f+11 | | 359.7C8
389.753
389.778 | 281456 | .640 | 3.25E+C8
2.39E+C9 | 393.227 | 258532
258393 | 23.338 | 1.36E+10
1.28E+10 | | 396.727
396.758 | 235632
235202 | 3.101
4.894 | 1.65E+09
2.65E+09 | | 402.537 | 197656 | 1000.000 | 7.815.11
7.816.11 | | 389.778
389.804 | 281030
280367 | .703 | 3.55E+08
3.70E+C8 | 393.279 | 258229
257940 | 18.350 | 1.05F+10
1.06E+10 | 1 | 396.624 | | 3.C63
59.676 | 1.63E+09
3.61E+10 | 11 | 402.608 | 197193 | 1000.000 | 7.61E+11
7.81E+11 | | 389.848 | 280581 | .863 | 4.36E • C 8 | 393.349 | 257774
257607 | 18.791 | 1.08E+10 | | 396.895 | 234873
234583 | 68.705
56.581 | 4.456+10
3.59E+10 | | 402.660 | 196858 | 1000.000 | 7.81E+11 | | 369.874
389.900 | 280416
280251 | . 900 | 4.56E+(8
4.56E+(F | 393.420 | 257316 | 33.892 | 1.41E+10
2.05E+10 | 1 | 396.546 | 234415
234248 | 5C-015 | 3.136+10 | | 402.705
402.731 | 196560
196388 | 1000.000 | 7.80F+11
7.80F+11 | | 389.944 | 279961
279795 | . 893 | 4.51E+C8 | 393.446 | 257150
256984 | 34.985 | 2.12E.10
2.26E.10 | 1 | 396.991 | 233956
233769 | 68.7C6
85.127 | 4.45E+10
5.64E+10 | | 402.757 | 19619D
195892 | 1000.000 | 7.80E+11
7.80E+11 | | 389.596 | 279629 | -840
-850 | 4.26E+C8 | 393.517 | 256523 | 36,425 | 2.27E+10
2.22E+10 | 1 | 397.043
397.088 | 233623 | 95.493 | 6.41E+10
7.60E+10 | 1 1 | 402-828 | 195724 | 1000.000 | 7.80E+11 | | 390.040
390.066
390.092 | 279170 | .873
-893 | 4.415.08 | 393,568 | 256355
256359 | 34.985 | 2.125.10
2.116.10 | 1 | 397.113 | 233160 | 115.258 | 7.89E+1C
3.04E+10 | 1 | 402-899 | 195261 | 1000-000 | 7.80E+11
7.80E+11 | | 170-137 | 278707 | -919
-553 | 4.61F.CR | 393.639 | 255899
255720 | 32.767 | 1.98E+10
1.96E+10 | | 397.184 | 232695 | 1.465 | 7.79E+C8 | | 402.550 | 194923 | 1000-000 | 7-80F+11
7-80F+11 | | 390.163
390.189 | 278363 | - 980 | 4.96E+CB | 393.710
393.736 | 255424
255255 | 29.762 | 1.78E+10
1.97E+10 | 1 | 397.236
397.280 | 232357
232052 | .985 | 5.24E.CA
5.32E.CA | | 463-021 | 194460 | 1000,000 | 7.80E+11
7.80E+11
7.79E+11 | | 370.234 | 278067
277887 | 1.023 | 5.16F.C8
5.26F.C8 | 393.762 | 255061 | 34.026 | 2.06E • 10 | 1 | 397-305 | 231887 | 1.003 | 4.15E.C8 | | 403.047 | 194293
194001 | 1000.000 | 7.79E+1 | | 390.285
370.330 | 27772C
277424 | 1.073 | 5.41E+C8
5.71E+C8 | 393.806 | 254766
254598 | 30.154 | 2.2CE+10
2.33E+10 | | 397.330 | 231722
231429 | 1.140 | 6.C6E+CR
3.70E+10 | | 403-116 | 193836
193671 | 1000.000 | 7.79E+11
7.79F+11 | | 390.355 | 277254
277C83 | 1.183 | 5. 96F + CP
6. C6F + CR | 393, 258 | 254430 | 39.424 | 2.43F+10
2.45F+10 | l | | | 59,500 | 3.91E+10
3.77E+10 | | 403.189 | 193391 | 1000.000 | 7.79E+11 | | 390.426 | 276786 | 1.222 | 0.10E+C8 | 393,928 | 253966
253797 | 44.999 | 2-82F+10 | | 197.426
397.471
397.496 | 231091
230794
230623 | 65.000
73.500 | 4-16F+10
4-76E+10 | | 463.240 | 193049 | 1000-000 | 7.79E • 11
3.16E • 11 | | 390.478 | 276448 | 1.283 | | 393.959 | 253504 | 41.081
41.081 | 2.54F+10
2.54E+10 | 1 | 357.522 | 230452 | 75.000 | 4.87E+1C | | 403.311 | 192021 | 430.000 | 3.16E.11 | | 390.522 | 276155
275990 | 1.313 | 6.61E+C#
6.36E+CB | 394.025 | 253338
253172 | 45.441 | 2.94F+10 | | 397.567
397.593 | 230155
225986 | 87.000
93.000 | 5.73E+10
6.17E+10 | | 403.397 | 192457 | 1000.000 | 3.16E.11
7.80F.11 | | 390.547
390.572
390.617 | 275824
27553C | 1.263 | 6.36E+CB
6.36E+CF
6.15E+C8 | 394.055 | 252862
252716 | 47.587 | 3.0CF • 10
3.06F • 10 | 1 | 397.619 | 229817 | 95.000 | 6-31E+10
6-82E+10 | | 403.407 | 192003 | 1000.000 | 7.80E+11
7.80E+11 | | 340.642 | 275360 | 1-280 | 6.45F+(# | 394, 147 | 252551
252269 | 47-167 | 2.97F+1C | 1 | 397,689 | 229349 | 105.503 | 7.09F+10
7.35E+10 | | 403.477 | 191547 | 1000,000 | 7.805.11
7.406.11 | | 390.714
390.714 | 27489C | 1.453 | 7.30E+(8 | 394.215 | 252109
251950 | 33,993 | 2.06F+10
1.99E+10 | 1 | 397.761 | 228867 | 95.000 | 6-30E+10
6-81E+10 | - 1 | 403.529 | 191214 | 1000.000 | 7.80E+11
7.79E+11 | | 190-765 | 274536 | 1.75) | 8.80E+C8 | 394.284 | 251692 | 35.900 | 2.18f +10 | 1 | 357.812 | 228527 | 95,000 | 6.30E+10 | | 403.590 | 190751 | 1000.000 | 7.79E+11 | | 390.810
390.835 | 274243
274078 | 2.403
2.753 | 1.236.09 | 394.310
394.376 | 251528
251363 | 43.000 | 2.60F+10
2.67F+10 | ĺ | 397.858
397.884 | 228228
228057 | 87.000
77.000 | 5.71E+10
4.99E+10 | - 1 | 403-625 | 190582
190285 | 1000.000 | 7.79E+11
7.79E+11 | | 390,860 | 273913 | 3.127 | 1.566+09 | 394.400 | 251075
250909 | 54.500
60.600 | 3.495+10 | | 397.910
357.556 | 227886 | 77.000 | 4.99E+10 | | 403.696 | 190115 | 1000.000 | 7.79E+11
7.79E+11 | | 390.570 | 273453 | 2.135 | 1.32E+09
1.23E+09 | 394.432 | 250744
250453 | 64.000 | 4.19F+10 | ļ | 397.981
398.007 | 227420 | 113.494 | 7.66E+10
8.41E+10 | | 403.767 | 189623 | 1000.000 | 7.79E+11
7.79F+11 | | 391.0C2 | 272989
272821 | 2.005 | 1.C1F+09 | 394.502 | 250287 | 60.000 | 3.90F+10
3.75E+10 | ł | 378.053
398.078 | 226958
226791 | 145.765 | 1.016.11 | | 403.819 | 189286 | 1002.000 | 7.79E+11 | | 391.027
391.053 | 272821
272654
272362 | 2.279 | 1.14E+09
1.14E+09 | 394.529 | 250120
249928 | 58.000
49.500 | 3.13E+10 | | 398.104 | 226624
226333 | 105.963 | 1.176+11 | | 403.863
403.889 | 188997 | 1000.000 | 7.79E + 11
7.79E + 11
7.79E + 11 | | 391.C58
391.124 | 272362 | 2.816
3.25/ | 1.416.09 | 394.598 | 249661
249454 | 45.000
39.000 | 2.81E+10
2.39E+10 | | 398.149 | 226169 | 79.605 | 9.33E+10
5.16E+16 | | 403.515 | 188657
188363 | 1000.000 | 7.79E+11 | | 391.150 | 272632 | 4-00- | 2.03E+05
2.22E+09 | 394.670 | 249192
249015 | 19-000 | 2.39E.10
2.18F.1C | | 398.201 | 226704 | 50-405 | 3.12E.10
6.47E.09 | | 403.585
404.011 | 188194
188026 | 1000.000 | 7.79£+11
7.79£+11 | | 391.220 | 271580
271416 | 4.423 | 2.47E+C9
2.47E+C5 | 394.723 | | 35.900
30.500
34.550 | | | 398.246
348.271 | 225715
225575
225605 | 11.578
12.331
8.351 | 6.91E+09
4.57E+09 | - 1 | 404-056
404-060 | 187739 | 1000.000 | 7.79E+11
7.79E+11 | | 371.291 | 271152
270986 | 4.729 | 2.39F.C9
2.22E.09 | 394.795 | 248520
248350 | 50.016 | 2.09F • 10
3.16F • 10 | l | 398.297
398.342 | 225409
225119 | | 6-12E+10
6-79E+10 | | 404.105 | 187418 | 1000.000 | 7.79F • 11
7.79F • 11 | | 3) 1 . 34 2 | 27C82C | 4-617 | 2.32F+09 | 394. 866
394. 892 | 248179
247882
247713 | 72.226 | 4.39F+10
4.79E+10
4.56F+10 | | 398.368
398.394
318.439 | 224955
224789 | 102.312
107.136 | 7-14E+10
8-C3E+10 | |
404.274 | 186359 | 680.000 | 5.17F+11 | | 391.413 | 270528
270361 | 4.229 | 2-17E+09
2-28E+09 | 194.916 | 247544 | 67.187 | 4.41E+10 | | 338-466 | 224498
224330 | 118.951 | 9.00F+10 | | 404.300
404.345 | 186195 | 175.000
61.500 | 1.19F+11
3.85E+10 | | 391.413
391.439
391.484 | 276193
269901 | 4.652
5.343 | 2.44E.CS
2.70E+09 | 394.563 | 247247
247076 | 57.606 | 3.91E+10
3.71F+10 | | 398.490
398.535 | 224163
223870 | 143.562 | 9.90E+10
1.10E+11 | | 474.371
404.397 | 185735
185567 | 1000.000 | 7.79F + 11
7.79E + 11 | | 121.510 | 269735
269566 | 5.438 | 2.755+09 | 395.014 | 246905
246006 | 57-264 | 3.68E+10 | | 398.561
398.567 | 223703 | 160-483 | 1.12E -11 | - 1 - | 404.442 | 185275 | 1000-000 | 7.79F • 11 | | 391.536
391.580
391.606 | 269276
269109 | 5.994 | 3.05E+09
3.19E+09 | 395.085 | 246436
246265 | 55.225 | 3.53F+10
3.66F+10 | 1 | 398.672 | 223236 | 79.143 | 5.10F+10
4.88E+10 | | 404.493 | 184947 | 1000.000 | 7.79F+11
7.80E+11 | | 391.632 | 268941 | 6.451 | 3+33E+09 | 395.157 | 245966
245796 | 56.581 | 3.63E+10 | | 398.686 | 222886 | 86.738 | 5.64E+1C
8.84E+CS | - 1 - | 404-564 | 184483 | 1000.000 | 7.80E+11 | | 391.677
391.702 | 268646
268476 | 6.476 | 3.34E.05
3.59E.09 | 395.182
395.208 | 245625 | 19.239 | 1.11E+10
1.94E+10 | | 395-731
398-757 | 222391 | 15.600
6.503
29.200 | 3.55E+09
1.72E+10 | - 1 - | 404.590
404.635 | 184313
184018 | 1009.000 | 7.80F+11
7.80E+11 | | 371.728
391.773 | 268305
267983 | 7.055
7.754 | 3.64E+09
4.CZF+CS | 395,253 | 245328
245159 | 34.291 | 2.07F • 10
2.08E • 10 | i I | 398.783
398.627 | 222223
221728
221760 | 11.200 | 6.256.09 | - 1 - | 404.660
464.686 | 183952
183685 | 620.000
385.000 | 4.69E+11
2.81E+11 | | 391.799
391.625 | 267815
267646 | 8.78)
8.671 | 4.60E+05 | 395.305 | 244990
244692 | 41.681 | 2.536+10
2.77E+10 | 1 1 | 348.653 | 22176C
221592 | 69.E00
87.000 | 4.38E.10 | - 1: | 404.731
434.756 | 183390
183207 | 30.500 | 5-12F+10
1-83E+10 | | 391.87C
391.895 | 267351
267181 | 9.235
8.351 | 4.86E+C9
4.36E+09 | 395.375
395.401 | 244522
244351 | 80.865 | 5.42E+10
5.60E+10 | | 399.145
399.171 | 219862
219697 | 56.000
37.200 | 3-48F+10
2-23E+16 | | 404.782
404.827 | 183036
182741 | 34.300 | 2.08E+10
1.00E+10 | | 391.921
331.967 | 267017 | 8.145
7.384 | 4.25F+C9
3.83F+09 | 395.446
395.472 | 244054
243885 | 85.647
53.217 | 5.78E+10
5.59E+10 | | 379.216
379.241 | 21 94 CF
21 92 4 2 | 3C.253 | 1.78E • 10
1.12E • 10 | | 404-852 | 182574 | 1000.000 | 7.81E+11
7.81E+11 | | 191.997 | 266545 | 7. 84 7 | 4. (98+09 | | 243716 | 71.829 | 4.74E+10 | | 339.267 | 219101 | 17.203 | 9.79E+C5 | | 474.523 | 182111 | 1000.000 | 7-916+11 | | 192.018
392.063
192.089 | 266381
266085 | 8.145
9.113
11.252 | 4.25E+09
4.8GE+09 | 395.543 | 243419
243249 | 57.606
56.922
51.918 | 3.70E+10
3.65F+10 | 1 | 399.311
399.335 | 21862C
218664 | 16.000
24.000
95.000 | 9.C7F.09
1.39E.10 | - 1 3 | 404.974
404.974
405.019 | 181940 | 1000.000 | 7.81E+11
7.81E+11
7.81E+11 | | 192.089
342.115 | 265923
265756 | 12.544 | 6. CZE+C9 | 395.594 | 243077
242777 | 38.313 | 3.29E+IO
2.34F+IO | | 399.30C
399.473 | 218508 | 10.374 | 6.19E.10
5.76E.09 | - 1 - | 405.045 | 181472 | 1300.000 | 7.62F+11 | | 392.160
392.165 | 265467 | 14.665 | 9. C4E+C9
8.55E+C9 | 395.650 | 242604 | 55.563
64.593 | 3.55F+10
4.20E+10 | | 399.617 | 216633 | 1.133 | 6.C4F+C8
5.58E+C8 | | 05.C71 | 181134 | 1000.000 | 7. PZE+11
7. BZE+11 | | 372.211 | 265301
265135 | 15.563
[4.417
12.544 | 7.896+09
6-776+09 | 395.737 | 242432
242133
241364 | 49.622 | 3.125.10 | | 399.643
399.689
399.715 | 21e365
216193 | 23,600 | 1.376.10 | ۱ ، | 4C5.141 | 180666 | 375.000
455.000 | 2.74F+11
3.38F+11 | | 392.256
392.282 | 264972
264707 | 17.863 | 6-96F+C9 | 395,789 | 241795 | 38-671 | 2.37E+10 | | 369.741 | 216021 | 65.003
53.003 | 3-276+10 | - 1 4 | -05-212 | 180200 | 147.000 | 9.966 +10 | | 392.308 | 264*43 | 12-438 | 6.406.09 | 395. 859 | 241530
241331 | 84.138 | 6.39E+10
5.64E+IC | | 399.785
399.869 | 215719
215561 | 21.500 | 1.336.10 | | 105.237 | 18¢033
179853 | 37.200
65.000 | 2.275.10
4.115.10 | | 392.404 | 264087
26392C | 12-544 | 6.78E.09 | 395. 885 | 241162 | 71.037 | 4.67E+10
5.095+10 | ı ļ | 399.833
430.183 | 215402 | 41.000 | 2-47E+1C
8-83E+C9 | - 1: | 05.307 | 179559
179301 | 35.900
21.500 | 2.19E+10
1.27E+10 | | 392.450 | 263627 | 14.665 | 8.05E+C9
8.97E+09 | 395.955
395.981 | 240694
249523 | 73.027 | 4.81E+10
4.35F+10 | | 400.2CB | 212924 | 6.000 | 3.27E.09
4.69E.09 | | 05.359
05.404 | 179223
178928 | 1000.000 | 7-62F+11
7-83F+11 | | 392.501 | 263291 | 18.205 | 1.62E+10 | 396.026 | 247226 | 70.645
71.828 | 4.63F+1C
4.72E+10 | - ! | 400-278 | 212465 | 4.703 | 2:55E+09
6:25E+09 | | 05.429 | 178759
178591 | 1700.000 | 7.83E+11
7.83E+11 | | 372.572 | 262828 | 21.380 | 1.22E+1C | 396.C78 | 239864
239591 | 77.317 | 5-12E-10
5-66E-10 | - 1 | 430-326
400-859 | 212148 | 2.900
27.500 | 1.56F+09
1.61E+10 | ٠ ١ ٠ | 05-500 | 178297 | 1000-000 | 7.836+11
7.836+11
7.836+11 | | 392.598 | 262659
262362 | 25.692
19.237 | 1.496+10 | 396.123
376.148 | 239420 | 33.993 | 2.056 -10 | | 430.883 | 208472 | 216.003 | 1.528+11 | - 1 4 | 105.552 | 178131
177965
177675 | 1000.000 | 7.635+11 | | 392.669 | 262193
262022 | 18.791 | 1.005-10 | 396.174 | 239249
238952
238783 | 27.060 | 2.29E+10
1.60F+10 | - } | 433.907
431.249
431.437 | 206059 | 270.003
.643 | 1.94E+11
3.44E+08 | 1 3 | 05.596 | 177675
177510 | 1000.000 | 7.83E+11
7.83E+11 | | 392.767 | 261723
261525 | 16-350 | 1. C3E+10
1. C4E+16 | 396.245
396.771 | 238783
238502 | 24.037
18,940 | 1.41E+10
1.09E+10 | | 431.462 | | .695
14.791 | 3.76E+CB
8.38E+09 | 4 | 05-648
05-692 | 177345 | 1000.000 | 7.83E+11
7.83E+11 | | 392,793 | 261353
261654 | 19.845 | 1.13E+10
1.15E+1C | 396.316
396.341 | 236305
236135 | 18.060 | 1.04F • 10
1.40E • 10 | | 401.468
402.126
402.151 | 204648
204477
200285 | 455.761
1000.000 | 3.41E-11
7.85E-11 | | 105.718 | 176893
176726 | 1000.000 | 7.84F+11
7.84F+11 | | 342.864 | | | 1.24E+10 | 396.367 | Z37966 | 103,242 | 7.04E+10 1 | | 402-151 | 200123 | 1000.000 | 7.e5F+11 | - 4 | 05.788 | 176444 | 1000.000 | 7.84F • 11 | | 392.890
192.936
392.961 | 260715
260419 | 20.153 | 1.15E+1C
1.19E+10 | 396.417
396.438 | 237671
237504 | 96.286
89.764 | 6-51E+10 | 1 | 402-176 | 199962
199676 | 1000.000 | 7.84E+11
7.84E+11 | - 1 4 | 05.813 | 176282
176121 | 1000.000 | 7.84E+11 | | 392,587 | 260251
260082 | 22.013 | 1.27E • 10
1.39E • 10 | 396.464 | 237137 | 87.309
75.558 | 5.83E+10
4.96E+10 | } | 402.246 | 199510 | 820.003 | 7.84E+11
6.34F+11 | 1 3 | 05.883
05.909 | 175837 | 1000.000 | 7.84F+11
7.84F+11 | | 393.033 | 25978P
259620 | 29.588
32.473 | 1.76E+10
1.55E+10 | 396.534 | 236879
236713 | 73.662 | 4.84E+10
5.22E+10 | | 402.318 | 199077 | 710.003 | 5.43E+11
7.82E+11 | 1 4 | 05. 535 | 175513 | 1000.000 | 7.846+11
7.656+11 | | 373.CR4
393.130 | 259453 | 32.767 | 1.97F+10
1.98F+10 | 396.605 | 236422 | 85.647 | 5.70F • 10
6.37F • 10 | ļ | 432.441 | 196283 | 1000.000 | 7.82E+11 | | | | | | | , , , , , , , 0 | 734124 | 26.101 | 1.481.10 | 3,0.830 | 230277 | -7,710 | 3.576.10 | - 1 | | | _ | [| - [| | | | | | | | | | | | | | _ | | | | | - | | | | | ### TABULATIONS OF CURRENT AND INFERRED ELECTRON DENSITY FOR RAM C-I, PROBE 8 | (| | | ELECTRON | |---
--|--|--| | ELAPSED | ALTITUDE, CU
FEET MIC | RRENT, | DENS ITY. | | ELAPSED
TIPE,
SECCADS | PEET MIC | RUARPS | PER CUBIC
CENTIMETER | | 1 3000000 | (a) | | ELECTRON
DEMSITY,
ELECTRONS
PER CUBIC
CENTIMETER | | | | | | | 369-659 | 281771 | -493 | 2.45E+C8 | | 389.782 | 281010 | - 473 | 3.345408 | | 389.807 | 286847 | - 803 | 3.99E+C8 | | 389.852 | 280560 | -913 | 4.548+68 | | 389.877 | 280393 | • 923 | 4.59E+C8 | | 389.968 | 279940 | -923 | 4-585+08 | | 389.973 | 275774 | . 863 | 4.28E+08 | | 389.999 | 279608 | -869 | 4.28E+CF | | 390.044 | 279316 | • 900 | 4.48E+08 | | 390.095 | 278982 | 922 | 4.58E+C8 | | 390. L40 | 276685 | 1.000 | 4.98E+08 | | 370.166 | 278514 | 1.623 | 5. C7E+C8 | | 120.237 | 278046 | 1-223 | 5.57E+C8 | | 390.263 | 277866 | 1.263 | 6.26E+C8 | | 370.288 | 277499 | 2.303 | 6.46E+GB | | 390.333 | 277403 | 1 343 | 6-65E+E8 | | 390.385 | 277062 | 1.432 | 7. C9E+C8 | | 390+430 | 276765 | 1.583 | 7.83E+C8 | | 370.455 | 276596 | 1.593 | 7.88E+C8 | | 390.481 | 276427 | 1.660 | B. 22E+C8 | | 390.550 | 275965 | 1.750 | 8.66E+08 | | 390.575 | 275804 | 1.803 | 8.9CE+08 | | 390-620 | 275509 | 1.773 | 8.75E+CR | | 390-672 | 275167 | 1.403 | 5.90E+C8 | | 390.717 | 274865 | 2 - 202 | 1. C5E+09 | | 390-743 | 27469B | 2+520 | 1.24E+C9 | | 190.769 | 274323 | 3-127 | 1.775.09 | | 390.136 | 274057 | 4.407 | 2.165.09 | | 370.863 | 273893 | 4.400 | 2+166+09 | | 390.908 | 273601 | 4.293 | Z+11E+C9 | | 370.960 | 273263 | 3. 945 | 1.935+09 | | 371.005 | 272968 | 3.577 | 1.756.09 | | 391.031 | 2728CC | 3.461 | 1.69E.09 | | 191-107 | 272342 | 4-228 | 2.675+09 | | 311.127 | 272176 | 5 - C2 - | 2.48E+C9 | | 391-153 | 272011 | 5.994 | Z.98F-09 | | 351.108 | 271723 | 0.313
6.504 | 3-15E+09 | | 399, 786 398, 789 398, 789 398, 852 318, 872
318, 872 318 318 318 318 318 318 318 318 318 318 | 271395 | 6.742 | 2.4556.08 3.906.08 3.906.08 3.906.08 4.936 | | 391.294 | 271131 | 6.247 | 3.11E.09 | | 391.320 | 270965 | 6.247 | 3.11E+09 | | 391.346 | 270799 | 5.994
6.381 | 2.58E+09 | | 191.417 | 270340 | 5.536 | 2.74E+C9 | | 371-443 | 270172 1 | 2.224 | 6.38E • 09 | | 371.488 | 269881
269714 | 7-214 | 3.62E+09 | | 391.539 | 269547 | 9.117 | 4.655.09 | | 391.584 | 269255 | 9.065 | 4.598+09 | | 391-609 | 269088 | 8.455 | 4.29E+C9 | | 391-660 | 208920 | 9-812 | 5-065-09 | | 191.706 | 268454 1 | 0.465 | 5.41E+09 | | 371.732 | 268284 [| 0.615 | 5.596.09 | | 191.777 | 267962 1 | 2.003 | 6.C7E+09 | | 371.026 | 267625 1 | 1.794 | 6.14F+09 | | 371.673 | 267330 | 1.034 | 5. 7ZE - 09 | | 351.899 | 267160 1 | 1-361 | 5-90E+09 | | 391.970 | 266696 | 0.151 | 5.246+09 | | 391.996 | 266528 1 | 0.595 | 5.48E+09 | | 372.022 | 266360 1 | 1.469 | 5-57E+09 | | 192.067 | 205058 1 | 3.454 | 7-115-09 | | 3+2-118 | 265737 | 7.916 | 9.70E . C9 | | 112.163 | 265447 1 | 9.693 | 1.088+10 | | 372-189 | 265286 2 | 1.C73 | 1.165.10 | | 392.260 | 264851 | 5.823 | E-51E+C9 | | 392.285 | 264687 1 | 5.044 | 8. C9E • 09 | | 392-311 | 204523 1 | 5.044 | 8.C9E+09 | | 192.356 | 264233 1 | 4-617 | 7.32E+09 | | 392.468 | 263895 1 | 6.652 | 9.065.09 | | 392.453 | 263606 1 | 9.239 | 1.06F+10 | | 392.479 | 263438 2 | 0.922 | 1.166.10 | | 392.505 | 263270 2 | 9+50Z | 1.44E+1C | | 392.576 | 762807 3 | 0.609 | 1.776.10 | | 392.602 | 262638 2 | 6.694 | 1+05E+10 | | 192.647 | 262341 2 | ** 762 | 1.598.10 | | 392.699 | 262001 | 5.127 | 1.436+10 | | 392.744 | 261701 2 | 2.829 | 1.296+10 | | 3+2.770 | 261504 2 | 4.576 | 1.40E+10 | | 192.796 | 261332 2 | 0 · 127 | 1.43E+10 | | 392.842
392.868
392.894
392.939
392.965
392.991 | 260863 2 | 8.694 | 1.66E-10 | | 392.694 | 260694 2 | 6.465 | 1.526 - 10 | | 192.919 | 260398 2 | 8-694
D-017 | 1-60E+LC | | 392.991 | 260227 3 | 2.173 | 1-885-10 | | 393.036 | 259767 3 | 4.550 | 2.04E+10 | | 393.036
393.062
393.088 | 259599 3 | 2.415 | 2.09E+10 | | 399. 599. 399. 399. 399. 399. 399. 399. | 241717 241171 241 | - 4923
- 4923 | 2.456-C0 | | 143.159 | 251976 3 | 4.274 | 2.02F.10 | | i | | | - 1 | | ELAPSED
TIPE,
SECONDS | ALTITUDE,
FEET
(a) | CURRENT,
MICROAXPS | ELECTFON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETE | |---|--
--|--| | 993.142 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 25.88021
25.88021
25.88021
25.88021
25.77020
25.77020
25.77020
25.77020
25.77020
25.77020
25.7000
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25.8002
25 | 31. 273 26. 282 27. 284 28. 28 | 2.016-10 1.576-10
1.576-10 1.5 | | 393.256
393.282 | 258373
258209 | 26.662 | 1.546+10 | | 393.327 | 257919
257753 | 24.394 | 1.40E+10 | | 393.379 | 257586 | 33-340 | 1.966+10 | | 393.449 | 257130 | 41.526 | 2.50F+10 | | 393.520 | 256671 | 46.742 | 2. 86E+10 | | 393.572 | 256334 | 39.424 | 2.86E+10
2.36E+10 | | 393.617 | 256038
255868 | 34.985 | 2.07E+10 | | 393.669 | 255698
255402 | 34.550 | 2.04E+10
2.04E+10 | | 393,739 | 255234
255040 | 35.194
38.071 | 2.08E+10
2.3LE+10 | | 393.810 | 254745
254577 | 48.415
52.647 | 2.98E+10
3.27E+10 | | 393-861 | 254409 | 53.215 | 3.31E+10 | | 393.932 | 253945 | 54.217 | 3.38E+10 | | 394. CO3 | 253483 | 53.002 | 3.35E+10 | | 394.054 | 253151 | 55.902 | 3.496+10 | | 394.099 | 252661
252696 | 56.922 | 3.56E+10 | | 394.150 | 252531
252248 | 50.016 | 3.56E+10 | | 394.219 | 252089
251 930 | 44.101 | 2.086.10 | | 394.288 | 251672 | -5.000
53-000 | 7.74E+10 | | 394.339 | 251343 | 57.000 | 3.56E • 10 | | 354.409 | 250889 | 69.000 | 4.41E+10 | | 394.480 | 250433 | 74.200 | 4.786.10 | | 394.505 | 250100 | 66.000 | 4.40E+10 | | 394,576 | 249507
249640 | 56.000 | 3.4RE+1C
3.27E+10 | | 394.627 | 249473 | 48.000 | 2.93E • 10 | | 394.700 | 248993 | 45-000 | 2.736.10 | | 394.773 | 248499 | 48.415 | 2.95E - 10 | | 394.825 | 248158 | 67.943 | 4.31F.10 | | 394.895 | 247692 | 76.075 | 5.07E+10 | | 394.566 | 247225 | 69.264 | 4.43E+10 | | 394.992
395.018 | 247355
246884 | 64.230 | 4.22E+10 | | 395.063
395.089 | 246585
246414 | 03.542 | 3.99E+10 | | 395.115 | 246244
245945 | 66.437 | 4-19E+10 | | 395.186 | 245774 | 28.511 | 1.656+10 | | 395.257 | 245306 | 37-634 | 2.23E • 10 | | 395.376 | 244 769 | 49.622 | 3.03E+10 | | 375.379 | 244500 | 89.764 | 5.84F+10 | | 395.450 | 244033 | 96.286 | 6.31E-10 | | 395.475 | 243864 | 83.217 | 5.93E+10 | | 395.546 | 243397 | 67.564 | 4.13F+10 | | 395.598 | 243056
242755 | 58.983 | 3.66E+10
3.25E+10 | | 395.669 | 242583 | 73.430 | 4.07E+10 | | 395.741 | 242112 | 71.028 | 4.55E - 10 | | 395.792 | 241774 | 34,127 | 2.0CE+10 | | 395.862 | 241309 | 92.492 | 4.01E-10 | | 395. 933 | 240843 | 84.624 | 5.44E+10 | | 395.959
395.585 | 24050Z | 81.965
77.317 | 5.25E+10
4.92F+10 | | 396.030 | 240205
240036 | 81.561
62.365 | 5.27E+10 | | 396- CBI
396- 176 | 239867
239569 | 99.764 | 5.80E • 10 | | 396.152 | 239399
239228 | 64.230
37.313 | 4.00E+10 | | 396.223 | 238931 | 29.056 | 1.68E+10 | | 396.274 | 238581 | 25.127 | 1.44E+10 | | 396.345 | 238284 | 20.308 | 1.156+10 | | 396.416 | 237944 | 114.614 | 7.24E+10 | | 396.441
396.467 | 237483
237316 | 97.096 | 6.94E+10 | | 396.512
396.537 | 237025
236958 | 20. 292
24. 394
24. 394
25. 215
25. 215
27. | 2-016-10 1-2 | | | 214493 | 91-745 | E 005+10 | | ELAPSED
TIME,
SECONDS | ALTITUDE
FEET
(a) | , CURRENT,
MICROAMPS | ELECTRON DENSITY, ELECTRONS PER CUBIC CENTIMETER | |--
--|--|--| | 396.660 | 236068 | 15.430 | 5.59E+C9 | | 376.731
196.802 | 235611 | 8.456 | 4.58E+C9
5.60E+09 | | 396.827 | 235017
234852 | 4.260
89.764 | 2.26E+C9
5.74E+10 | | 396.898 | 234562
234395 | 79.605
69.864 | 5.03E+10
4.36E+10 | | 396,950
376,995 | 234227
233935 | 61.422 | 3.79E+10
5.28E+10 | | 397.020
397.046 | 233769
233602 | 15.430
11.034
8.456
20.264
4.260
89.764
79.605
69.864
61.422
83.217
101.399
107.136
123.334
137.564
22.171
1.215
1.009 | 6.55E+10
6.97E+10 | | 397.091 | 233139 | 137.564 | 9-236+10 | | 397.188 | 232674 | 1.215 | 6.38E+C8 | | 197.239 | 232336 | 1.585 | 8.33E+C8 | | 397.308 | 231866
2317C1 | 1.043 | 5.47E+C8 | | 357.378 | 231408 | 73.503
75.003 | 4.59E+10
4.69E+10 | | 397,429 | 23107C
230772 | 73.503 | 4.59E+10
4.63E+10 | | 357,500 | 230602
230431 | 83.000 | 5.24E.10
5.24E.10 | | 397.571 | 230134
229965 | 105.503 | 6.81F+1C | | 397.667 | 229499 | 113.000 | 7.346+10 | | 397.719 | 229157 | 113.003 | 7.346.10 | | 397.790 | 228676 | 111.000 | 7.19E+10 | | 357.861 | 228206 | 55.007
89.003 | 6. C5F+10 | | 397.911 | 227864
227568 | 91.003 | 5.77E+10
7.61E+10 | | 397.985 | 227199 | 126.545 | 8.30f + 1C
1.01E + 11 | | 378.056
378.082 | 226937
226770 | 171.733 | 1.17F.11
1.23F.11 | | 398.108 | 276603
226313 | 174.721 | 1.196+11 | | 398.204 | 226148 | 74.287 | 5.55E+10
4.62E+10 | | 198.249 | 225554 | 16.793 | 9.386+05 | | 358.346 | 225099 | 113.494 | 7.316.10 | | 348.357 | 224769 | 117.000 | 7.63E+10 | | 398.468 | 224310 | 152.803 | 1.025+11 | | 398.539 | 223849 | 200.608 | 1.27E+11
1.38E+11 | | 378.590 | 223515 | 17-207 | 9. 62E+09
6.94E+10 | | 398.662 | 223040 | 46.742 | 2.79E+10
7.08E+10 | | 398.735
398.760 | 222564 | 1.750 | 1.45F • 10
9.24E + CB | | 398.786
398.631 | 222201 | 5.600 | 3.52E+10 | | 398.856 | 221571 | 102.000 | 6.5CE+10 | | 379.174 | 219676 | 54.503 | 3.2 / 10 | | 399,245 | 219221 | 36.500 | 2-14E+1C | | 399.314 | 218600 | 28.503 | 1.64F+1C
1.79E+10 | | 379,363 | 218209 | 113.903 | 7.25E+10
6.12E+09 | | 399.621 | 216612 | 13.900 | 4.87E+CA
7.70E+C9 | | 399.692
395.718 | 216344 | 93.000 | 2-19E+10
5-84E+10 | | 399.744 | 215099
215699 | 31.503 | 4.10E+10
1.82E+10 | | 399.812 | 215362 | 147.000 | 9.665-10 | | 1981, 919 397, 1001
397, 1001 397, 1 | 2300000 231182 2 | 18.700 | 6.985-00 6.065-00 7.065- | | 430.281 | 212445 | 16.553 | 9.50E+C9 | | 400.329 | 212129 | 4.903 | 2.63E+09 | | 400.510 | 208452 | 270.000 | 1+876+11
8-266+10 | | 431.252 | 206038
204797 | 4.610 | 3.95E+C8 | | 401.466 | 204626 | 1000-000 | 2.52E+11
7.58E+11 | | 402.154
402.179 | 200103
199942 | 1000.000 | 7.58E+11
7.58E+11 | | 402.224 | 199655 | 1000.000 | 7.58E-11
7.58E-11 | | 996. 460 9 196. 196. 196. 196. 196. 196. 196. 19 | 230068 2327712 239162 239017 224629 2314272 23 | 15.433 11.0314 12.240 1 | 6.984-00 6.064-00
6.064-00 6.0 | | 402.444 | 148505 | 1000.000 | 7.586+11 | | | | | | | ELAPSED
TIPE,
SECONDS | ALTITUDE
FEET
(a) | CURRENT,
MICROAMPS | ELECTREN
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETE | |--|--|--|--| | | | 1000 000 | CENTIMETE | | 402-515 | 19780) | 1000.000 | 7.58E+11
7.58E+11
7.58E+11
7.58E+11 | | 402-567
602-612 | 197466 | 1000-000 | 7.58E+11 | | 402-637 | 197004 | 1000.000 | 7.50E • L1 | | 402-768 | 196538 | 1202.000 | 7+50E+11 | | 402-760 | 196169 | 1000-000 | 7.58E+11 | | 402-831 | 195703 | 1000.000 | 7.58E+11 | | 402.902 | 195240 | 1000-000 | 7.586.11 | | 402-554 | 194902 | 1000.000 | 7.58E+11 | | 403-025 | 194439 | 1000.030 | 7.586+11 | | 403-096 | 193980 | 1000.000 | 7.58E-11 | | 403-147 | 193650 | 1000-000 | 7.58E • 11 | | 403.218 | 193194 | 1000.000 |
7.58E+11 | | 403.289 | 192765 | 1000.000 | 7.58E • 11 | | 403.340 | 192436 | 1000.030 | 7.58E-11 | | 403.410 | 191982 | 1000.000 | 7.58E+11 | | 403.461 | 191526 | 1000.000 | 7.58E+11 | | 403-506 | 191160 | 1000.000 | 7.58E • 11
7.59E • 11 | | 407-603 | 190899 | 1000.000 | 7.59E+11
7.59E+11 | | 403.629 | 190761
190764 | 1000.000 | 7.59E+11
7.59E+11 | | 403.700
403.726 | 189923 | 1000.000 | 7.59E • 11 | | 403.771 | 189602 | 1000.000 | 7.59E • 11
7.59E • 11 | | 403.877
403.867 | 189265 | 1000.000 | 7.59E • 11
7.60E • 11 | | 403.892
403.914 | 189803 | 1000.000 | 7.60F+11 | | 403.589 | 188342
186173 | 1000.000 | 7.60E+11
7.60E+11 | | 404-015 | 186005 | 1000.000 | 7.606-11 | | 474.084 | 187555
187598 | 1000.000 | 7.60F • 11
7.60E • 11 | | 494-252 | 186502
186338 | 1000.000 | 7.61E • 11
7.61E • 11 | | 404-303 | 186174 | 1000.000 | 7.61E+11
7.61E+11 | | 404.374 | 185714 | 1000.000 | 7.62F+11
7.62E+11 | | 404.445 | 185255 | 1000-000 | 7.62E+11
7.62E+11 | | 404.496 | 184926 | 1300.000 | 7.62E+11
7.62E+11 | | 404-567 | 184462 | 1000.000 | 7.62E+11
7.62E+11 | | 404.638
404.664 | 183997 | 1000.000 | 7.63F+11
7.63F+11 | | 404.689 | 183564 | 1000.000 | 7.63E+11
7.63E+11 | | 404-760 | 183186 | 270.000
680.000 | 1.89F+11
5.09E+11 | | 404.830
424.856 | 182720 | 170.000 | 4.60f+11
7.64f+11 | | 404- 881 | 182385 | 1000.000 | 7.64F+11
7.64F+11 | | 404.952 | 181919
181748 | 1000.000 | 7.64E+11 | | 405-023
405-04F | 181451 | 1003.000 | 7.65E+11
7.65E+11 | | 405-074 | 161113 | 1000.000 | 7.65F • 11
7.65F • 11 | | 405.145 | 180645 | 1000.000 | 7.986-11 7.986-12 7.986-12 7.986-13 7.9 | | 405.215 | 180179 | 1000.000 | 7.66F+11
7.66F+11 | | 405.266 | 179832 | 820.000
620.000 | 6.21F+11 | | 405.336
405.342 | 179370 | 430.000 | 3-136+11 | | 405,407 | 178907 | 1000.000 | 7.665+11
7.676+11 | | 405.459 | 178569 | 1000.000 | 7.67E+11 | | 425, 529 | 176110 | 1000.000 | 7.67E+11 | | 405-600 | 177655 | 1000.000 | 7.68E+11 | | 405-651 | 177324 | 1000.000 | 7.68E+11 | | 435.721 | 175872 | 1000.000 | 7.686.11 | | 405, 791 | 176423 | 1000-000 | 7-69E+11 | | 402-470 402-515 402-515 402-515 402-515 402-515 402-612 402-612 402-612 402-612 402-612 402-612 402-612 402-612 402-612 403-61 | 1970 | 1000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 1 | 7.586-11
7.586-11 7.5 | | 405.912 | 175655 | 1000.000 | 7.70E • 11 | | 425 | | | | *1 meter = 0.3048 feet | ſ | ELAFSED
TIPE,
SECCHOS | ALTITUCE
FEET | , CURRENT,
HICPDAMPS | ELECTRON
DENSITY,
ELECTRONS
PER CURIO | ELAPSE
TIME,
SECONO | D ALTITUD
FEET | , CURRENT, SCAMPOR | ELECTRON
DENSITY,
ELECTRONS
PER CUEIC | | ELAPSED
TIPE.
SECCNOS | FEET | . GURRENT,
PICROAMPS | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | | FLAPSED
TIPE,
SECCNOS | FEET | . CURRENT.
MICROAPPS | ELECTREN
DENSITY,
ELECTRENS
PER CUBIC
CENTIMETER | |--------------|-------------------------------|----------------------------|----------------------------------|--|----------------------------------|----------------------------------|--|--|---|---|----------------------------------|---|--|-----|-------------------------------|--------------------------------------|-------------------------------|--| | \downarrow | 389.732 | 28130C
261151 | •100 | GENTIMETER
6-10E+C7 | 1 | (a) | 5.872 | 4.43E+C9 | | 197.949 | 227502 | 58.917
57.727 | 6-26E+10 | | 431-591 | 201160
200851 | 246.500
350.000 | 4.25F+11 | | 1 | 389.760
389.787
389.634 | | .103
.100
.103 | 6.18E.07
6.18E.C7
6.18E.07 | 393.89
393.94
393.67 | 3 253866
1 253689
8 253511 | 6.172 | | | 397.996
398.C44
398.072 | 227324
227C12
226836 | 67-214 | 8.05E • 10
8.85E • 10
5.86E • 10 | | 402.038
402.066
402.093 | 200851
200674
200499 | 350.000
395.000
432.500 | 6.42E+11
7.39E+11
8.20E+11 | | 1 | 185.8c2 | 28C671
28C494
28C317 | .100 | 6-18F-C7 | 393.59
394.04
394.07 | | 6.279 | 4.79E.09
4.79E.09 | | 398.099
398.146
398.174 | 226660
226353
226178 | 74.002
83.272
83.573 | 1.10F.11
1.28F.11 | | 402.140
402.168
402.195 | 200191
200014
199838 | 375.000
302.500 | 6.93E+11
5.38E+11
3.52E+11 | | 1 | 389.937
399.965 | 280C0e
275828 | .100 | 6.18F.C7 | 394-10 | 1 252847
8 252540 | 5.689 | 4.28E.C9 | ı | 398.174 | 226178 | 83.573 | 1.29F+11 | | 402.243 | | 212.000 | | | 1 | 399.992 | 27965C
279337 | .100 | 6.19E+C7 | 394.17
394.20
394.25 | | | | l | 359.201
378.248
398.276 | 226003
225698
225547 | 78.054
62.066
57.336 | 1.18E+11
8.58F+10
7.95E+10 | İ | 402.271 | 199381 | 157.000
170.000 | 2.44E+11
2.68F+11 | | - | 390.068 | 279160 | •103
•103 | 6-19E+C7 | | | 5.300
5.779
7.122 | 3.96F+C9
4.37E+C9
5.55E+C9 | ı | 398.303
398.351
398.379 | 22537G
225061 | 53.587 | 7.36E+10
6.84E+10 | | 402.345
402.373 | 198900 | 193.000 | 2-93F+11
3-60E+11 | | 1 | 390-142 | 27867C
278492 | .113 | 6.81E+C7
6.17E+C7 | 394.30 | 6 251555
3 251246 | 8.984 | 6.605.09
7.36E.C9
6.93E.C9 | ĺ | 398.379
398.406 | 224886
224711 | 57-336
53-587
50-976
55-528
67-453
95-995
110-557 | 7.62E+10
9.76E+10
1.51E+11 | | 402.440
402.449
402.476 | 198546
198235 | 270.000
290.000
302.500 | 4.65E+11
5.05E+11 | | 1 | 390-197 | 278313
277999
277805 | •103
•103 | 6.19E+C7
6.20E+07
7.37E+C7 | 394.40
394.40 | | 7.758 | 6.93E.C9
6.16E.C9
5.01E.09 | ! | 398.406
398.453
398.481
398.508
398.556 | 224711
224402
224224 | 110.557 | 1.81E+11
1.98E+11 | | | 197552 | | 5.30E • 11
5.30E • 11 | | 1 | 390.272 | | .117 | 6-20E+C7 1 | | | 5-969 | | 1 | 398.508 | 224046
223733
223555 | 119.393
101.426
95.995 | 1.026.11 | | 432.550
402.578
402.605 | 197394 | 290.000
325.000
337.500 | 5.03F+11
5.74E+11
6.00E+11 | | 1 | 390.402
390.449 | 276948
276634
276452 | .137
.163 | 8.516+C7
1.C1E+C6
7.55E+C7 | 394.51
394.55
394.58 | 250226
9 249913
7 249736 | 6.172
5.969
6.504 | 4.72F+C9
4.55F+C9
5.02F+C9 | | 398.584
398.611
398.658 | 223377 | 87.643
78.054 | 1.358+11 | | 402.652 | 196905
196724 | 365.000
395.000 | 6.58E+11.
7.18E+11 | | ı | 39C-5C4 | 276271 | •125
•155
•198 | 9.61E+07 | 394-61 | 249558 | 6.995
8.551
9.747 | 5.451.60 | ļ | 398.686
398.713
378.760 | 222887
222708 | 77.444
83.272 | 1.10E+11
1.26E+11 | | 402.737 | | 35C.000
223.000 | | | | 393.561 | 275767 | .119
.163 | 7.38E.07
1.02E.08 | 394.68
394.71
394.76 | 249365 | 9.747 | 8-18E+09 | | 378.760 | | 89-189 | 1.386 • 11 | | 402.783 | 196202
196023 | 183.000 | 3.64F+11
2.87F+11
2.50F+11 | | 1 | | | .285
.211 | | 394.76 | | 10.253 | 8.00E + C9
8.72E + C9 | | 398.788
398.815
398.862 | 22219C
222011
221698 | 98.574 | 1.56E • 11
1.42E • 11 | | 402.857 | 195531 | 157.000 | 2.37E+11
2.85E+11 | | - | 190.710
390.755
190.783 | 274914
2746C2
274421 | .160 | 1.32F+C8
9.97E+C7
1.44E+C8 | 394.79
394.81
374.86 | | 10.253
9.566
8.217 | 6.015+C9 | l | 398.890
378.917 | 221516
221336 | 85.4C7
93.415 | 1.34E+11
1.30E+11 | 1 | 402,912 | 195171
194857
194679 | 189.000
290.000
375.000 | 2.96E+11
4.92E+11
4.65E+11 | | | 390.810
390.858 | 274240 | .197 | 1.126+08 | 394.92 | 247702 | | 6.82E.C9
6.99E.C9
7.17E.09 | | 358.965
358.953
399.020 | 221025
220848
220671 | 108.415 | 1.456-11 | | 402.988
403.C15 | | 385-000 | | | | 390.886 | 273746
273568
27325F | .173 | 7.486.67 | 394.56
394.55
395.02 | | 0.747 | 8.22F+C9 | | | 220363 | 108.410
148.467
167.385 | 2.56E+11
2.96E+11 | | 403.0£1
403.091
403.118 | 194189
194013
193837 | 375.000
350.000 | 6.036.11 | | | 340.988 | | •133
•260 | 8.11E+C7
1.63E+C8 | 1 395-07 | 246529 | 14.075 | 1.30£ · 10
8.23£ · 09 | i | 399.095
399.122
399.170 | 220CC6 | 167.385
160.845
119.353 | 2.96E+11
2.82F+11
1.96E+11 | | 403.118
403.165
403.193 | 193837
193530
193354 | 337.500
325.000
375.000 | 5.84F+11
5.58E+11
6.59E+11 | | | 391.C15
391.062 | 272904
272995 | • 467
• 617 | 2.89E+C8
3.84E+C8 | 395.09
395.12 | 246170 | 9.566
9.379 | 8.04E+C9
7.85E+69
5.90F+C9 | | 399.170
399.198
395.225 | 21569 E
219523
219349 | 98.574 | 1.96E+11
1.54E+11
1.31E+11 | | 403.270
403.200 | 193354
193177
192895
192720 | 375.000
375.000
350.000 | 6.58F+11
6.06E+11 | | | 391.090
391.117
391.165 | 272417
27224C
271930 | .833
.753
.583 | 5.25E+C8
4.74E+C8
3.65E+CP | 395.20 | 245674 | 11.307
10.796
11.680 | 9.35E.C9
1.03E+10 | | 399.272
399.300 | 219069
218893
218716 | 86.141
75.108
78.673
89.164 | 1.106.11 | | 423.264 | 192720 | 280.000 | 4.65E+11 | | | 391.193
391.220 | 271756
271581 | .595
.540 | 3.72E+C8
3.40E+C8 | 395.27
395.30 | | 1 2 222 | 1.326.10 | | | 218716 | 89.184
124.078 | 1.36f+11
2.04f+11 | | 403.323
403.370
403.378 | 192546
192239
192062 | 176.500 | 2.67E • 11 | | 1 | 391.268
391.296 | | -613 | 3-85F+C8 | 395.33
395.37 | 244996
244817
244502 | 14.574 | 1-36E+10 | | 349.375
399.463
319.430 | 218407
218231
218055 | 124.078
154.539
184.287 | 2.67E-11
3.30E-11 | | 463.425 | 191884 | 212.000 | 2.55E · 11
3.32E · 11 | | П | 391.324 | 271119
270937
270619 | -643 | 4.176.C8
5.236.CP | 395.40 | 244:21 | 11.480
11.490
10.091 | 1.03E+10
1.01E+10
8.62E+C9 | | 399.477
399.565 | 217747 | 170.742
164.085
151.473 | 3.C1E+11
2.00E+11 | ĺ | 403.501
433.529 | 191394 | 375.000 | 4.81F+11
6.49F+11
R.11E+11 | | - { | 391.401 | 276442 | . 658 | 5.45F+C8
5.58E+C8 | 395.48 | 243823 | 10.409 | 8.96E+09
8.63E+09 | | 349.532 | 217393 | 151-473 | 2.60E +11
2.29E +11
2.47E+11 | | 403.576 | 190902
190722
190547 | 455-000 | 7-90F+11 | | | 391.504
391.531 | 269953 | .835
.842
.876 | 5.31E.08
5.35E.CE | 395.58 | 243464 | 9.922
10.486
10.960 | 8.45E+C9 | | 199-407 | 216903 | 137-C52
145-518
154-539 | | | 403.679 | | 420.006
375.000 | 7.38E+11
6.45E+11 | | 1 | 391.579 | 269556 | .876
.846
.971 | 5.57E+C8
5.3dE+C8 | 395.61 | 24296B | 11-876 | 9.575+C9 | i | 399.634
399.662
399.710 | 216408
216229 | 160.845
160.845
167.527
119.393 | 2.78E+11
2.78E+11
3.34E+11 | | 403.707
403.734 | 190049
189669
189530 | 367.500
375.000 | 6.29E+11
6.44F+11
6.83E+11 | | |
391.607
391.634 | 2691C5
266927 | | 6.196+CB | 395.68 | 242479
242290 | 13.046 | 1.196+10 | | 399.737
399.784 | 216050
215723
215541 | 187.527 | 1.93E+11
1.76E+11 | | 403.781
403.809
403.836 | 189530
189349
189169 | 395.000
385.000
375.000 | 6.62F+11
6.4]F+11 | | - | 391.6°1
391.709 | 268614
268433
268252 | 1.087
1.135 | 6.22E.C8
6.961.C8
7.28E.C8 | 395.741
395.781 | 242111
241796 | 12.501 | 1.13E +1C
5.77E +09 | | 399.812
399.839
319.867 | 215360
215043 | 101.426 | 1 576 - 11 | | 403.884 | 188854 | 223.950 | 3.47F+11
3.11F+11 | | - 1 | 391.736
391.784
391.P12 | 268257
267910
26773C | 1.135
1.036
1.117 | 7.28E+C8
6.63E+C8
7.16E+C8
7.27E+C8 | 395.84
395.84
395.89 | 241615
241434
241117 | 9.566
12.315 | 8.66F+C9
F.105+C9
1.11E+10 | | | | 130.003 | 1.996+11
2.136+11
3.166+11 | | 403.939
403.587 | 188495 | 176.500 | 2.67F+11 | | - 1 | 101-830 | 267234 | | 7.276.08 | | | | | | 399.942
399.989 | 214584
21437C
214188 | 212.000 | 3.84E+11 | - 1 | 404-015 | 188003 | 189.600 | 2.83E+11
3.35E+11 | | 1 | 371.687
371.915 | 267055 | 1.066 | 6.39E.C8
6.83E.C8
7.25E.C8 | 395.946
395.55
396.02 | | 13.741
14.379
14.574 | 1.28E+10
1.35E+10
1.42E+10 | | 400.017
400.044
433.092 | 2140C7
213690
213511 | 223.000
170.000 | 4.C9E.11
2.94E.11 | | 404.090 | 187514 | 375.000
445.000 | 6.74E+11
7.73E+11 | | 1 | 371.542
391.990
392.618 | 266562
266384 | 1.302 | E-40E+0A | 396.04 | 240081 | 15.181 | 1.45F+10
1.45E+10 | | 400.170
400.147
400.194 | 213511
213331
213017 | 137.003 | 2.66E+11
2.16E+11
1.95E+11 | . ! | 404.145 | 187163 | 465.CCC | 7.005411 | | 1 | 1+2.C45
192.093 | 26620£
265894
265717 | 1.411 | 9.13E.CH
1.C4E.C5 | 396.124
376.151 | 239584 | 16.719 | 1.64E+10
1.83E+10
2.23F+10 | | 400.194
400.222
400.249 | 213017
212835 | 122-000 | | - 1 | 404.220 | 186680 | 432.500
420.000 | 7.44E • 11
7.18E • 11 | | | 392.171
392.148
352.196 | | 1.478
1.677
1.261 | 1.C9E+C8 | 396.226
396.226 | | 21.314
24.124
25.377 | 2.62E+10 | | | 21 2835
21 2654
21 2337 | 96.000
122.000
157.000 | 1.95F+11
2.66E+11
2.92E+11 | | 404.295
404.323
404.350 | 186221
186045
185868 | 420.000
437.500 | 7.02F+11
7.15E+11
7.39F+11 | | - 1 | 192-224 | 265231
265055 | | 8.15E+C8 | | | 25.377
23.878
22.060 | 7.80E+10
2.59E+10 | | 400.325
400.352
400.399 | 212158
211978
211664 | 170.000
183.000 | 3.19E+11
3.19E+11 | | 404.398
404.426 | 185558 | 395.000
337.500 | 6.64F+11
5.521+11 | | | 392.251
392.299
392.327 | 264904
264556
264421 | 1.350 | 6.75E+CR
8.68F+OR
8.94F+CR | 396.329
196.356
396.463 | 238220
238041
237730 | 22.060
19.089 | 2.346.10
1.946.10 | | 400.427
400.454
400.501 | 211484
211305
210991 | 17C.007
163.507
189.007 | 2.91F · 11
2.78F · 11 | - 1 | | | 280.000 | 4.43F.11
2.77E.11 | | | 392.354
392.401 | 264246
263939 | 1.559 | 1.026.04 | 396.45 | 237552 | 19.089 | 1.94E+10
2.13F+10 | | 400.5C1
400.529 | 210991 | 189-007 | 3-306+11 | | 404.500
404.528
404.555 | 184497
184719
184540 | 183.000 | 2.775.11 | | | | 263761 | 2.034
2.472
2.226 | | 396.505 | | | 2.495.10 | | 430.556 | 210628 | 183.003
212.003
270.000 | 3.786+11 | | 404.631 | 184226 | 273.000 | 4.21F.11
5.23F.11 | | | 392.456
392.504 | 26 3271 | | 1.66E+09
1.48E+09 | 396.560 | 236886
236708
236398 | 26.409
26.409
29.917
35.389
36.855 | 7.46E-10 | | 400.632 | 210131 | 246.500
195.000 | 4.51E+11
3.41E+11 | - 1 | 404.658 | 183869
183556
183375 | 455.000 | 6.45E+11
7.70E+11 | | | 392.532
392.549 | 262913 | 2.004 | 1.326.09 | 396.636 | 236222 | | 4.52E+10
4.25E+10 | | 400.766
400.734
400.761 | 209456
209456
209279 | 137.000 | 2.626.11
2.126.11
2.016.11 | | 404.733 | 183182 | 455.000 | 7.69E-11 | | | 392.635
392.662
192.710 | 262239 | 2.913 | 1.26F+C9
1.39F+C9
1.47E+C9 | 396.710 | 236047
235741
235565 | 29.089 | 3.34E • 10
3.10F • 10 | | 400.761
400.808
430.836 | 208965 | 127.000 | | | 404.808
404.836 | 182865
182685
182506 | 420.000 | 6.97E • 11
7.64E • 11 | | - 1 | 192.718 | 261923
261742
261536 | 2.207 | 1.90E+09
1.93E+09 | 396.813
396.813 | 235414 | 27.206
26.545 | 3.10F+10 | | | 208785
208606 | 163.503
189.000
270.003 | 2.73E-11
3.25E-11 | | 404.863
404.910
404.938 | 182191 | 455.000
75.000
7.000 | 8.91E • 10 | | | 192.765 | | | 1.72F+09 | | 234729
234752 | 30.195 | 2.26F+10
3.50F+10
3.89E+10 | | 400.910
430.938
430.965 | 2C #291
2C 8110
207929 | 270.003
302.503
325.003 | 5.67E+11
6.10E+11 | | 434.965 | 181829 | 1.050
2.050 | 6.89[+08 | | | 972.848
972.848 | 261039
260855
260545 | 2.673
1.103
2.727 | 1.01F.C9
2.14F.09
1.85E.09 | 396.916
396.944
396.971 | 234442
224766
234090 | 32.7#5
34.226
35.3#9 | 4-126-10 | | 401-013 | 207430
207249 | 212.003
183.003
195.003 | 3.70E+11
3.10E+11 | j | 405.041
405.068 | 181330 | .590 | | | | 992.516
992.944
192.571 | 260545
260365
260186 | 2.722
3.202
3.423 | 1.85E+09
2.21E+09
2.38E+09 | 396. 971
397. 018
397. 046 | 234090
233780
233603 | 35.389
35.389
35.973 | 4.30E+10
4.30E+10 | l | 401.068
401.116
401.144 | 207249 | 195.000 | 3.346.11 | | 405-116 | 180632 | -510
-350 | 9.76E.C7
3.37E.C8
2.31E.CR | | - 1 | 193.019 | 255874
255698
259521 | 3-746
3-746
4-207 | 2.64E+C9
2.75E+C9 | 397.073 | 233426
233114 | 36.267
38.930 | 4.44F+19
4.86E+10 | | 401.144 | 206932
206752
206573 | | 3-33F+11 | | 405.171 | 180650
180469
180152 | . 730
.820 | 1.52F + C8 | | | 193.047
193.074 | 259521 | 4.207
3.321 | 3-01F+C9 | 397.148 | 237914 | 41-417 | 5-26F+10 1 | İ | 431.171
401.218
401.246 | 206573
206258
206077 | 212.003
212.003
212.003 | 3.67E+11
3.67E+11
3.66F+11 | J | 405.247 | 179970 | 2.130 | 6.30E+CB
1.43E+C9
7.85E+CP | | | 193.171
133.149
193.176 | 259214
255037
258860 | 3 • 202
3 • 354 | 2.31E.C9
2.22E.09
2.34E.C5 | 397.223 | 237754
232438
232246 | 43.739
45.458
43.739 | 5.64E+10
5.43E+10
5.64E+10 | | 401.246
401.273
431.221 | 205896
205579
205399 | 193.007
157.007
157.000 | 3.07E+11
2.54E+11
2.54E+11 | | 405.122
405.350
405.377 | 179461
179292
179104 | 1.200
.590 | 7.85E+CP
3.89E+CP
3.36E+CB | | | 93.274 | 258551
2564CC | 3-672 | 2-12E+09
2-10E+09 | 397.278
397.325
397.353 | 232067 | 41.743 | 5.31F+10 | | 401.349
401.376
401.423 | 205399 | 157.000
163.500
212.000 | 2-66F+11 | | | | .510 | 7.89F+C8 [| | | 193.279
193.227
193.355 | 258224
257916
257741 | 3.047
3.701
4.488
5.156 | 2.61F+09
3.24E+09
3.79F+09 | 397.351
397.380
397.428 | 231571
231390
231073 | 35.681
34.806
36.855 | 4.35E+1C
4.21E+10
4.53F+10 | | 401.423 | 205220
204905
204724 | | 3.64E-11
4.65E-11 | | 405.452
405.479
405.527 | 176613
176434
178122 | .540
.630 | 3.56E+CP
4.15E+CB
2.31E+CB | | | | 257566 | | | | | | | | 431.451
401.478
401.226 | 204543
264224
204044 | 367.500
355.000 | 0.96F+11
7.56E+11
7.55E+11 | | 405.555
405.565 | 177944
177766 | .350
.290
.230 | 1.57E+C8
1.52E+C8 | | | 193.429
193.457
193.484 | 25725E
257080 | 5.697 | 4.25E+C9
4.18E+09 | 397.483
397.530
397.558 | 230714
230399
230215 | 45.808
60.544 | 5.99E+10
8.54E+10
5.64E+10 | | 401.554
431.591
431.628 | 204046
203967
203553 | 350.003
212.003 | 0.54E-11
3.60E-11 | | 405.430 | 177456 | -140 | 9.26E+C7 | | - 1 - 3 | 177.532 | 2545C2
254589 | 4.431 | 3.205.09 | 397.558
397.565
397.633 | 230218
230037
229719 | 66.586
67.493
55.528 | 9.81E+10
7.65[+10
6.74F+10 | | 401.628
401.656
401.643
431.730 | | 195.000
183.000 | | | 405.685 | | .180
.230 | 1.916.08 | | | 93.560
93.587
193.635 | 256231
256231 | 4.207
4.319
4.431
4.713 | 3.026.09
3.116.09
3.216.09 | 307-441 | | | 6.74F+10 | | 431.730 | 2031 94
202879
202685 | 183.003 | 3.01E+11
3.01E+11
3.00E+11 | | 405.761
405.788
405.836 | 176619
176442
176136 | .610 | 4.02F+C8 | | | | 255916
255736
255555 | 4.713 | 3.44E+09 | 397.688
397.736
397.764 | 229357
229040
228846 | 45.514
43.739
43.739 | 6.11E+10
5.64E+10
5.65F+10 | | 401.758
401.785
401.833 | 202685
202504
202188 | 212.000 | 3.596+11 | | 405.864 | 175963
175790
175489 | 5.930
7.000 | 4+35E+C9
5-27E+C9 | | | 93.690
193.738 | 255239 | 5.089
5.523
5.779 | 4. IZE+C9 | 397.791 | 728665 | 46-870 | 6.17E+10
7.19E+10 | | 401.961
401.888
401.936 | 20 20 08
20 16 28
20 15 14 | 212.000 | 3.57E+11
3.39E+11 | | 405.938
465.966
405.593 | 175489
175315
175142 | 1.050 | 6.67F+09
6.87F+C8
3.88F+C8 | | | 93.793 | 254855
254542 | 5.779
5.672 | 4.34E.C9 | 377.867
397.894
397.941 | 228171 | 52.848
54.371
57.727
59.320 | 8.051-10 | - | 431.936 | 201514
201337 | 212.000 | 3.56E+11
3.55E+11 | | 405.593 | 175142 | .590 | 7.8EE+CB | | Ŀ | 93.868 | 254362 | 5.441 | 4.C6E+C9 | 397. 641 | 227681 | 59.320 | 6.33E • 10 | Ĺ | | | | | L | | | | | | ELAPSED
TIPE,
SECCHDS | ALTITUDE, (
FEET MI
(a) | CUPREAT, | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIPETER | FLAPSED
TIPE,
SECONDS | ALTITUDE
FEET
(a) | , CURPENT,
HICROAMPS | ELECTRON
DENSITY.
ELECTRONS
PER CUPIC
CENTIMETER | | ELAPSED
TIPE,
SECCNOS | ACTITUDE
FEET
(a) | ,
CURRENT,
MICROAMPS | ELECTACN
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | | LAPSED
TIME,
SECONDS | ALTITUDE,
FEET
(a) | CURPENT,
MICROAMPS | ELECTPON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | |---|---|----------------------------------|--|--|---|--|--|-----|--|--------------------------------------|--|--|-------|-------------------------------|--------------------------------------|------------------------------------|--| | 389.736
389.763 | 281278
281129 | .100
.100 | 5.85E+C7
5.85E+C7 | 393.844
393.871 | 254520
254340 | 7.905
7.905
7.905 | 5.36E+C9
5.36E+C9 | l | 357.657
397.945 | 227970
227659 | 88.413 | 9.88E+10
9.88E+10 | | 01.967 | 201315
201136 | 445.000
465.000 | 5.70E+11
5.99E+11 | | 389.790
389.838
389.865 | 280955
286649
280472 | .103 | 5.85E+C7
5.85E+C7
5.65E+C7 | 393.899
393.947
393.574 | 254340
254160
253846
253667 | 0.145 | 5.36E+09
5.36E+09
5.73E+09
6.36E+09 | | 397.972
378.000
398.048 | 22748C
2273C1
226990 | 88.413
86.141
86.141
94.275 | 9.88E+10
9.56E+10
9.56E+10
1.07E+11 | 1 3 | 02.069 | 200829
200652
200477 | 570.000
655.000
670.000 | 5.99E+11
7.53E+11
8.79E+11
9.01E+11 | | 389.893
389.941
389.968 | 28C295
279984
279806 | -103 | 5.85E+C7
5.85E+C7
5.85E+C7
5.85E+C7 | 394.002 | 253488
253177
253001 | 8.551 | 5.86E+C9
5.86E+C9
5.48E+C9 | | 398.C75
398.102
398.150
398.177 | 226814
226638
226331 | 101.426
117.427
134.356 | 1.17E+11
1.47E+11 | 2 | 02-144 | 200169
199992
199816 | 570.000 | 7.48E+11
6.51E+11
5.45E+11 | | | 279806
279627
279315 | .103
.103 | 5.65E+C7
5.65E+C7 | 394. C77
394. 104
394. 152 | 253001
252825
252517 | 8.058
7.758
7.253
7.386 | 5.48E.C9
5.25E.09 | | 398.177
398.204 | | 134.356
129.115 | 1.64E+11
1.57E+11 | 1 4 | 02.199 | | 432.500
302.500
29C.000 | 3.44E+11
3.44E+11
3.44E+11 | | 390.044
390.071
390.058 | 279527
279315
279137
278960 | •100
•100 | 5.85E+C7 | 194-179 | 252341 | | 5.25E+09
4.87E+09
4.57E+09
4.97E+09 | 1 | 398.204
398.252
398.279 | 225981
225701
225525 | 55.995
86.141 | 1.49E+11
1.69E+11
9.52E+10 | 1 2 | 102-301 | 199359
199184
199878 | 325.000 | | | 390.146
370.173
390.200 | 278648
278470
278291
277977 | .120
.110 | 7.03E+C7
6.44E+C7
5.86E+C7 | 394.255
394.282
394.309 | 251882
251707
251533 | 8.551
10.253
11.680 | 5.87F+C9
7.25E+09
8.46E+09 | 1 | 398.307
398.355
398.382
318.409
336.457
398.484
398.512 | 22534 f
225040
224864 | 179-115
124-678
55-995
86-141
83-573
81-236
89-978 | 9.22E+10
8.65E+10
1.00E+11 | | 02.404 | 198701
198523 | 455.000
495.000
527.500 | 5.76E+11
6.33E+11
6.79E+11 | | 390.248
390.275
390.303 | 277977
277783
277602 | .128 | | 394.357
394.384
394.412 | 251226
251049 | 12.685
11.876
10.796 | 9.32E+C9
8.63E+C9
7.71E+C9 | | 378.409 | 224689
224380
224202 | | | | 02.479
02.566
02.554 | 197036
197860
197350
197372 | 515.000 | 6.60E+11
6.60E+11
6.58E+11 | | | | .103 | 6.41E+C7
5.86E+C7
6.96E+C7 | | 250872 | 10.796
8.381
7.758 | | | 398.484 | | 160.845
187.527
194.025 | 2.04E+11
2.46E+11
2.56E+11 | | 02.554 | 197550 | 515-000
540-000 | | | 390.378
390.405
390.453 | 277105
27692¢
276611 | .107
.100 | 6.42E+C7
5.86E+07
8.55E+C7 | 394.487
394.515
394.563 | 250382
250204
249691 | 7.617 | 5.26E+09
5.16E+09
5.16E+09 | | 398.560
398.567
398.614 | 223711
223533
223355 | 177.631
151.473
137.052 | 2.30E+11
1.89E+11
1.67E+11 | 3 | 02.60A
12.656
02.683 | 197194
196882
196702 | 570.000
655.000
655.000 | 7.376+11
8.60F+11
6.59E+11 | | 390.480
390.508
370.556 | 276430
276249
275936
275743 | .240 | 1.41E+C8
9.57E+C7 | 374.590 | 249713
249535 | 8.217
9.566
11.130 | 5.67E+09
6.71E+C9 | | 398.662
398.689
398.716
398.764 | 223043
222864
222685
222346 | 121.435
119.393
129.116 | 1.44E+11
1.41E+11
1.55E+11
1.75E+11 | 2 | 02.711 | 196521
196179
196000 | 432,500 | 7.77E • 11
5.35E • 11 | | | 275743
275743
275234 | .203
.266
.203
.260 | 1.17E+C8
1.56E+C8 | 394.665
394.692
394.720 | 249223
249042
248842 | 13.223
13.046
12.867 | 8.01E+09
9.82E+09 | | 398.764
398.791 | 222346 | | 1.756+11 | | 02.786 | | 385.000
337.500
325.000 | 4.68F+11
4.02E+11
3.65E+11
4.65F+11 | | 390.661
390.687
390.713 | 275234
275064
274893 | | 1.19E+C8
1.53E+C8
1.15E+C8 | 394.768 | 248862
248533
248353 | | 9.50E+C9
9.51E+C9
9.67E+C9 | | 398.791
398.818
398.866 | 222167
221986
221675 | 154.539
164.085
145.518 | 1.93E • 11
2.07E • 11
1.79E • 11 | | 02.861 | 195508
195329
195149 | 385.000
420.000 | 4.66F+11
5.15F+11
6.83F+11 | | 390.759
390.786
390.614 | 274579
274398
274217
273902 | .210
.413
.290 | 1.23E+(B
2.41E+CB
1.70E+CB | 394.822
394.870
394.897 | 248173
247859
247683 | 12.078
12.078 | 9.57E+C9
8.83F+C9 | Ì | 398.893
398.921 | 221496
221316
221003 | 131.713
131.713
157.662
184.287 | 1.58E+11
1.58E+11
1.97E+11
2.37E+11 | 3 | 02.964 | 194835
194050
194478
194167 | 540.000
600.000
630.000 | 7.686+11 | | 390.662
390.889
390.916 | 273902
273724
273546 | .215
.173 | 1.23E.C8
9.98E.C7 | 394.974 | 247500
247186 | 11.876 | 8.66E+C9 | | 393.969
398.996
399.023
399.071 | 220826
220649
220340 | 184.287
203.631
258.278 | 2.37E+11
2.68E+11
3.56E+11 | ۱ ۱ | 03.067 | 193991 | 570.000 | 7.23F+11
7.23E+11
7.22F+11 | | 390.916
390.564
393.991 | | .183
.153
.460 | 1.06E+CB | 374, 999 | | 12.501
12.685
13.046 | | | | | | | 1 | 03.121 | | 570.000 | 7.22E+11
7.21E+11 | | 391.018 | 273055
272862
272573 | | 2.71f.(B
3.41E.CP | 395.075
395.107
395.129 | 246823
246506
246327
246147 | 12.685 | 9.37E.09
9.69E.09
9.38E.09 | | 399.126
399.174
399.201 | 219985
219676
219502 | 239.776
194.025
170.742 | 3.25E+11
2.51E+11
2.15E+11 | [: | 03.196 | 19350R
193332
193155
192873 | 600.030
655.030
570.000 | 7.21E-11
7.64E+11
8.42E+11 | | 391-093
391-121 | 272395
272218 | 1.035
.937
.823 | 6.CHF.CB
5.48E+08 | 295.177
395.204
395.232 | 245833
245651
245470 | 14.075 | 1.066+10 | | 399.228
399.276
399.303 | 219327
219047
218871 | 139.797
124.674
131.713 | 1.68E+11
1.45E+11
1.56E+11 | | 03.299 | 192699
192524
192217 | 515.000
445.000 | 6.47E+11 | | 391.169 | 271908
271734
271555
271278 | . 23
. 753
. 673
. 793 | 4.83E+C8
4.42E+C8
3.95E+C8 | 395.232
395.280
395.367
391.314 | 245153 | 16.254
16.751
20.245 | 1.20E+10
1.49E+10
1.64E+10 | . [| 399.303
399.331
339.379 | 218654
218385 | 131.713
157.662
213.707 | 1.56E+11
1.94E+11
2.80E+11 | | 03.401
03.479 | 192039
191862 | 325.000
337.500
317.500 | 3.81E+11
3.97E+11
3.57E+11 | | 391.223
391.271
191.299 | 271278
271096 | .793 | | 395.392 | 244794 | | | | | 218209 | 243.377 | | | | 191553
191372
191193 | 420.000
515.000 | 5.09F+11
6.40F+11
8.15E+11 | | 391.328
191.377
391.404 | 271096
270915
270597
270420 | .873
.543
.932 | 4.84E+C8
5.55E+C8
5.50E+OR
5.36E+C8 | 395.392
355.409
395.437
395.485 | 24480
244298
244117
243800
243621
243441
243127 | 15.181
14.574
13.046 | 1.16E.10
1.11E.10
9.71E.09 | | 399.433
399.441
379.508
399.535 | 217725
217548
217371 | 254.478
236.226
236.225 | 3.63E+11
3.44E+11
3.14E+11
3.14E+11 | | 03.580 | 190483 | 540.000 | | | 391.432
371.480
391.507 | 270242
265931
269752 | 1.018 | 6.C1E+C8 | 395.512
395.539
395.587 | 243621
243441 | 17.315
12.315
13.570
17.200 | 9.08F • C9
1.02F • 10
1.35F • 10 | | 399.563
399.610
399.638
399.686
399.713 | 217060
216880
216701 | 722.523
225.874
239.776 | 2.92E-11
2.97E-11 | | 03.635 | 190520 | 700.000
695.000
570.000 | 9.00F+11
R.78E+11
7.14E+11
7.56E+11 | | | | 1.021
-976 | 6.C3E+C8 | | 243127
242945 | 17.200
19.306
22.757 | 1.35F •10
1.56E • 10
1.89E • 10 | | 399.686 | 216385 | 239.776
243.377
239.776 | | | | | 640.000
640.000
685.000 | 7.56E+11
8.12E+11
8.75F+11 | | 191.563
371.610
391.617 | 26926C
269083
268904 | 1.043
1.109 | 6.16E+C8
6.56E+C8 | 395.642
395.690
395.717 | 242945
242764
242447
242268 | | 2.10E.10 | | | 21620¢
216027
21570€ | 219.222 | 3.23E+11
3.17E+11
2.85E+11 | - 1 2 | 03.785
03.812 | 189508
189508
189327 | 670.000 | | | 371.685
391.712
391.740 | 268592
268411
268230 | 1.334
1.227 | 7.61E+C8
7.90E+C8 | 395,744
395,792 | 242088 | 23.195
23.195
17.448 |
1.93E+10
1.37E+10 | | 379.815
375.843 | 215519 | 219.222
200.555
190.772
187.527 | 2.40E+11
2.35E+11 | 1 2 | 03.915 | 189146
188931
189652 | 495.000 | 8.11F+11
6.C#E+11
4.95F+11 | | 191.740
191.788 | 26823G
267888
2677C7
267527 | 1.387 | 7.26E+CB
6.23E+CB
8.26E+C8 | 395.819
395.847
395.895 | 241592
241411
241094
240915 | 17.448
16.254
16.719
19.386
21.817 | 1.26E+10
1.31E+10
1.56F+10 | | 399.691
399.518
399.945
399.993 | 215021
214841
214662
214347 | 182.000
216.000
290.003 | 2.40E+11
2.35E+11
2.26E+11
2.69E+11
3.94E+11 | | 03.943
03.991
04.018 | 188472
188159
187981 | 367.500
325.000
395.000 | 4.35F+11
3.78F+11
4.71E+11 | | 391.843 | | 1.389 | 7-596-08 | 395, 922 | 240915
240735
240421 | 21.817 | | | 399.993
400.020 | 214347
214166 | 105 000 | 3+661 111 | 1 1 | 04-046 | 187503
187492
187316 | 465.000 | 5.66E • 11
8.29F • 11 | | 191.740
191.788
391.815
331.843
191.891
391.946
391.946 | 267032
266853
266540 | 1.281
1.405
1.378
1.559 | 8.336+CP
8.176+CB
9.256+CB | 395. 997
396. 024 | 240739 | 24.620 | 1.93E.10
2.07E.10
2.10E.10
2.12E.10 | | 400.020
400.048
403.096
430.123 | 214166
213985
213668
213488 | 420.007
355.007
290.000
270.000 | 5.65F+11
3.92F+11 | 1 4 | 04.148 | 187141 | 750.000 | 9.675.11 | | 392-021
392-049
392-097 | 266361
266183
265872 | 1.732
2.034
2.279 | 1.036+09 | 376.1C0
396.127 | 239741
239562 | 26.408 | 2.25E+1C
2.28E+10 | | 400.150
400.198
410.225 | 213309 | 183.003 | 2.25E-11
2.25E+11 | 1 | 04.223 | 186507 | 820.000
895.000
857.500 | 1.06E •12
1.17F • 12
1.12E • 12 | | 392.097
372.124
392.152 | 265872
265695
265518
265264 | 2.279
2.261
2.097
1.775 | 1.35E+C9
1.35E+C9
1.25E+O9
1.05E+O9 | 396.202
396.229 | 239382
239068
238856 | 29.089 | 2.53E+10
3.06E+10
3.36E+10 | | 430.225
430.253
400.301
400.328 | 212632
212632
212315
212135 | 189.003
212.003
270.003
302.503 | 2.34F+11
2.68F+11
3.56E+11
4.07F+11 | 4 | 04.279 | 186149 | 927.500 | 1.21E+12
1.28E+12 | | | 2652C5
265033 | 1.775 | 1.056+09 | 396.257
396.305 | | 36.569
37.741
34.516 | | | 400.328 | 212135 | 302.503 | 4.C7F+11 | | 04.402 | 185846
185536
185350 | 1000.000 | 1.326.12 | | 392.227
392.255
172.303 | 265033
264882
264574 | 1.676 | 5.71E+C8
1.C3E+C9
1.C5E+C9 | 396.332 | 238176
238198
238019 | 34.516
32.785
31.038 | 3.49F+10
3.12F+10
2.93E+10
2.74F+10
2.47F+10
2.39F+10 | | 400.355
430.403
400.430 | 211956
211642
211462
2112#2 | 290.003
290.003 | 4.C6E+11
3.86E+11
3.E5E+11 | ; | 04.429 | 185350
185184
184875 | 1000.000 | 1.32E-12
1.32E-12
9.26E-11 | | 392.330
392.357
392.405
392.432 | 264399
264224
263917
263739 | 1.798
1.546
7.825 | 1.166+09
1.166+09
1.70E+09
1.50E+09 | 396.407
396.434
396.461
396.509 | 237708
237530
237553 | 28.545
27.737
29.164 | 2.47f • 10
2.39F • 10 | | 430.457
400.505
400.532
430.560 | 2112#2
21096#
210787 | 270.003
317.503
375.003 | 3.53F • 11
4.59E • 11
5.19F • 11 | | 04.559
04.607 | 184517
184517 | 655.000
655.000
725.000 | 8.70F+11
8.28F+11
9.26E+11 | | | 263739
263561 | 3.135
3.575
3.236
3.236 | 1.90F+09
2.19F+09 | 396.509
396.536
396.564 | 237042
236964
236666 | 33.648
37.741
43.739
55.917 | 3.036.10
3.496.10
4.186.10 | | 400.560
400.608
400.635 | 210605
210289
210109 | | 5.50[• 1 L
5.89E • 1 L
5.76E • 1 L | 1 4 | | 184025
183847
183534 | 829.000
1000.000
19(0.000 | 1.06F+12
1.32E+12
1.37F+12 | | 392.5CB
392.535 | 263561
263249
26307C | 3.236 | 2.19E.09
1.57E.09
1.57E.05 | | 236376 | 43.739
55.917
57.727 | | | | | 42C.003
412.503
375.003 | 5.76F+11
4.35E+11
2.78E+11 | | 04.661
04.709 | 183534
183353
183159 | 1000.000 | | | 392.611 | 262891
262577
262397
262217 | 3.072
2.722
2.602
2.799 | 1.636.09 | 396.639
396.666
396.714 | 236025 | 53.227 | 5.9CF • 10
5.34E • 10
4.23E • 10 | | +00.710
+00.717
+20.764 | 209436
209236 | 223.000
183.003
155.003 | 2.19E.11
2.36F.11 | | 04.764 | 182647
182663 | 1007.000 | 1.30E • 17
1.30E • 17 | | 392.666
192.714
192.741 | 262217
261901
261720
261513 | 2.799
3.169
3.423
3.701 | 1.08E+09
1.92E+09
2.09E+09
2.28E+05 | 396.741
396.769
396.817 | 235543
235392
235384 | 39.820
38.3?4
37.445
38.334 | 3.73E • 10
3.56E • 10
3.46E • 10 | | 400.812
400.839
400.866
400.514 | 208942
208763
208583 | 189.003
280.003
350.003 | 2.27[+11
3.62[+11
4.69[+11 | | 04.866
104.914
104.51 | 182483
182169
181997 | 100.000
50.000 | 1.30E •12
4.39F •10
3.72F •10 | | | 261513
261197 | 3.701 | 2.28F.CS
2.20E.C9
2.12F.C9 | 396.844
396.872
396.920 | 234907
234130
234420 | 38.334
39.528
43.739 | 3.70F • 10
4.19F • 10 | | 407.514 | | | 6.19E+11
6.99E+11
6.73E+11 | | 04.969 | | 38.000
15.500
7.000
2.450 | 1.16F+1C
4.93E+C9
1.61F+C9 | | 192.817
192.644
192.672
192.920 | 261197
261017
260837
260822 | 3.575
3.460
3.93 | 2.12E+C9
2.44E+D9
2.63E+09 | 396.929
396.947
396.974 | | | | | 430.541
430.569
431.017 | 208087
207906
207589 | 455.000
480.000
412.500 | | - 4 | 05.C72 | 181307
181307 | 1.430 | 1.61E.C9 | | 392.947
392.975
193.023 | 260343
260164
259852 | 4.207
4.319
4.895 | 2.70E+C9 | 397.022
397.049
397.076 | 234068
233758
233581 | 48.774
49.138
49.138 | 4.79F+10
4.84F+10 | | 401.044 | 207407
207226
206969 | 385.000
375.303
367.500 | 5.19E+11
5.02E+11 | 4 | 05.120
05.147 | 180629 | 2.200 | 9.73F+C#
1.906+C9
1.45F+09
9.816+08 | | 193.C23
193.050 | 259852
259676 | 5.375
5.441
5.441 | 3.45E+09
3.45E+09
3.50E+09
3.50E+09 | 397.124 | 233404
233092 | 50.236
56.658
62.214 | 4.57E+10
5.77E+10 | | 401.147 | 206730
206950
206236 | 375.000
385.003
375.000 | 4.89F+11
5.COE+11
5.14E+11
4.97F+11 | 1 4 | 05.223
05.250 | 180129
179935
179754 | 3.950
7.030 | 7.70F+C9
5.C4E+C5 | | 193.050
193.077
193.125
193.152 | 25 96 76
25 94 99
25 91 91
25 91 4 | | | 397.151
397.179 | 232912
232731 | 62.214
65.586
69.083 | 6.47E+10 | | 401.249 | | | | | 405.2/8
405.376
405.353 | 179754
179439
179260
179082 | 15.500
5.300
3.150 | 1.21E+10
6.10E+09
2.15E+09 | | 393.228 | 255014
258838
258525 | 3.701
4.319
3.886 | 2.71E+C9
2.71E+C9
2.41E+D9 | 397, 227
397, 254
397, 291 | 232416
232224
232044 | 65.245
59.725 | 7.36E+10
6.85E+10
c.14E+10 | | 401.120
401.147
401.174
401.222
401.249
401.277
401.325
401.352 | 205873
205556
205377 | 325.003
290.003
290.003 | 4.19E+11
3.66E+11
3.65E+11 | 2 | 105-380 | | 1.650
2.850 | 1.056+09 | | 393.255
393.283
393.371
393.358 | 25 63 78
25 82 02
25 78 94
25 77 1 9 | 4.488 | 2.83E+09
3.02E+09 | 397.329
397.356
397.384 | 231729
231548
231367 | 50.976
48.052
46.870 | 5.05F • 10
4.69E • 10
4.55E • 10 | | 431.379
431.477
431.454
401.482
431.530
431.557 | 205197
204883
204701 | 325.003
395.003
465.003 | 4.16F-11
5.20f-11
6.27E-11 | | 405.455
405.483
405.531 | 178591
178412
178190 | 2.850
3.150
1.600 | 1.94E+C9
2.16E+C9 | | 393.35g
393.385 | 257719
257544 | 5.689
7.122
7.905 | 3.68E+C9
4.74E+09
5.34E+09
4.65E+09 | 397.432
397.459 | 271050 | 46.870
50.236
55.141
69.529 | 4.55E+10
5.55E+10
7.35E+10 | | 401.482 | | 555.000
64C.003 | 7 445411 | | 105.55A
105.55A | 177722 | 1.630 | 7.CCE+CB | | 393.385
393.433
393.460 | 257544
257235
257058 | 7.905
0.995
6.749 | 4.65E+09
4.46E+09 | 397.486 | 230691
230376
230195 | | | | 401.557
401.584 | 204203
204024
203844 | 585.003 | 8.98E+11
8.09E+11
7.17E+11 | | | 177433 | -490
-760 | 3.23E+CB | | 393.488
393.536
393.563
393.591 | 256879
256567
256336
256209 | 6.069
5.523
5.227
5.303 | 3.57E+C9 | 397.589
397.637 | 230014 | 106.169
106.169
86.887 | 1.24F • 11
1.24F • 11
5.71E • 10 | Ì | 431.659 | 203351
203351
203171 | 420.000
375.000
367.500 | 5.50E+11
4.81E+11
4.69E+11 | | 05.661
405.689
405.737 | 177080
176772
176596 | .823
.660 | 5.38E+08
4.34E+C8
6.29E+C8 | | 191.591
393.639 | 256208
255894 | 5.303
5.441 | 3.41E+09
3.51E+09
4.C4E+C9
4.29E+C9 | 397.664
397.692
397.740 | 229515
229334
229017 | 76.845
69.529
65.689 | 2.34E+10
7.37E+10 | | | | 367.500
385.003
420.003 | 4.67E+11
4.90E+11 | : | 405.792 | 176420
176114
175941 | 15.500 | 1.006+09 | | 393.639
393.666
193.694
391.742 | 255894
255713
255533
255217 | 5.441
6.172
6.504
7.521 | 4.C4E.C9
4.29E.C9
5.G6E.C9 | 397.740
397.767
397.755 | | 65.689
66.136
67.807 | 6.87E+10 | | 401.761
401.769
401.837
431.664 | 202663
202662
202166
201986 | 420.000
432.500
432.500 | 5.40E+11
5.57E+11
5.50E+11 | 2 | 405.867
475.894
425.942 | 175941
175769
175467 | 20.000
23.000
26.900 | 1.61E+10
1.89E+10
2.24E+10 | | 393.742
393.769
393.796 | 255012
254833 | 7.521
7.521
7.380 | 5.06F+C9
5.06E+09
4.96E+09 | 397.843
397.870 | 728642
229327
228148 | 79.300 | 7.14F • 10
8.65F • 10
9.38F • 10 | |
401.892 | 201986
201806
201492 | 420.003 | 5.36E • 11
5.35E • 11 | | 405.969
405.997 | 175293 | .930 | 6.09E+C8 | | | 0.3068 feet | | | | | | | | | | | | - | | | | | | | ELAPSE
TIPE.
SECOND | FEET | CURRENT, | ELECTRON
DENSITY,
ELECTRONS
PER CURIC | ELA
TE
SEC | 46. | FEET | . CURRENT | FLECTRON DENSITY. SELECTRON PER CUPI | s | ELAPS
TIPE
SECON | . FEE | | AMPS ELECT | TY,
RCNS | 1 7146. | D ALTITUD | DE, CURREN | ELECTRON
IT. DENSITY.
PS ELECTRONS
PER CUBIC | |---|---|--|------------------------------|--|---|----------------------------|----------------------------------|--|--|-----|--|--|---|---|----------------|---|--|---|--| | | 359.73
399.76 | 281257 | .100
.100 | 5.61E.07
5.61E.C7
5.61E.C7 | 393. | 847 25
875 25 | (a)
544 57
54 31 7 | 8.984 | CENTINET | | 357.9
357.9
357.9 | (• | | CENT I | *ETEF | SECONO | (4) | 535.00 | CENTIPETER
0 5-43F+11 | | | 349.841
349.869
389.896 | 28C45C | -100
-100
-100 | 5.61E+07
5.61E+07
5.61E+07 | 393 | 902 25
950 25 | 54137
53824
53645 | 9,185
10,091
10,409
10,409 | 5-68E+C9
5-8ZE+09
6-48E+C9
6-71E+09
6-71E+C9
6-60E+C9 | | 397.9
398.0
398.0 | 03 2272
51 2269 | 79 113. | 957 1.08E
209 1.11E | | 401.99
432.64
402.07
402.10 | 200630 | 750.00
750.00
750.00 | 0 5.82E-11
0 7.84E-11
0 9.50E-11 | | | 389.944
389.97
339.999
390.647 | 279961
279782
279605
279293 | .103
.103
.103 | 5.61E+C7 | 194
394
394
394 | | 33466
33155
52970
52803 | 10.253
9.922
9.379
8.217 | 6.60E+C9
6.36F+C9
5.57E+C9 | 1 | 398.1 | 2265
3 2263 | 16 160.1 | | 111 | 402.17
402.20
402.20 | 7 200147
5 199970
7 199704
199511 | | 0 7-44E+11 | | | 390.074
390.102
390.149 | 279115
278938
278626 | .123
.103
.113 | 5.01E+C7
6.73E+C7
5.01E+07
6.17E+C7 | 394.
394.
394.
394.
394. | | 2495
2319
2142
1860 | 8.984 | 5.38E+09
5.69E+09 | | 398.20
398.21
398.21
398.31 | | 59 167.1
79 117.4
03 103.5 | 27 1.156 | 11 | 402-27
402-30
402-35 | 199337
199162
198856 | 555-00 | 0 5.00F.11 | | | 390.251 | 27826E
27796]
27776C | .163
.103
.125 | 5.61E.07
8.98E.C7
5.61F.07
7.18E.07
6.67E.C7 | 394 | 360 25
388 25 | 1511
1204
1027 | 11.680
13.741
15.181
14.574 | 7.67E+C9
9.24E+C9
1.04E+JC
9.89E+C9 | | 398.38 | 3 2248 | 117.4 | 72 9.49E-
22 9.48E-
27 1.15E-
29 1.45E-
07 2.35E- | 11 | 402.40
402.45 | 198501 | 670.00
750.00
820.00
895.00 | 0 B-45E+11 | | | 370.306
370.354
370.381
390.409 | 277575
277262
277283
276903
276588 | -119
-103
-119 | 5.61F+07
6.67F+07
8.17E+07 | 394.
394.
394. | 415 25
463 25
491 25 | 0538
0360 | 13.398
10.638
9.379 | 8.98E+C9
6.90E+09
5.98E+09 | | 398.46
358.46
358.51
398.56
398.56 | | | 75 2.69E •
27 2.78E • | 111 | 402.510
402.551
432.584
432.612 | 197838
197528
197350
197172 | 95.000
1000.000 | 9.275+11 | | | 370.456 | 276588
276407
276226
275907
275720 | .103
.203
.243 | 5.62E+C7
1.14F+C8
1.35E+C8
8.63E+O7 | 394. | 565 24
593 24 | 9869
9691 | 9.379
9.379
10.091
11.307 | 5.98E+09
5.98E+09
6.50E+09
7.40E+09
9.51E+09 | | 398.66
358.66 | 6 22333
5 22302
2 2228 | 1 167.3 | 89 1.56E+ | 11
11
11 | 402.659
402.687
402.714
402.762
402.789 | 196859 | 1000.000 | 1.036+12 | | | 390.560
390.588
370.665
370.691 | 275213 | -155
-407 | 8.68E+C7
2.28C+C8
2.74E+C8 | 394.
394.
394. | 723 240 | 9230
9323
8839
8510 | 14.075
14.391
16.254
15.605
14.772 | 1.126.10 | | 374.72
358.76
398.79 | 0 22266
7 22232
4 22214 | 1 177.6
4 187.5 | 33 1.86E+
27 1.98E+ | 11 | 402.789
402.817
402.864
402.892 | 195799
195486 | 1000.000 | 1.036.12 | | | 190.762
390.790
390.817 | 274872
274355
274375
274195 | .465
.245
.225
.323 | 2.625.08
1.635.CP
1.246.C8
1.805.C8
1.575.08 | 394.
394.
394.
394. | 798 241 | 8331
8151
7837
7657 | 14.574 | 1.07E+10
1.01E+10
9.91E+09
1.01E+10
1.02E+10 | | 378.86 | 7 22147 | 1 190.7 | 72 2.02E+ | 11 | 402.919
402.967
402.995 | 195326
195126
194813
194634 | 1000.000 | 1.02E+12
1.02E+12 | | | 390.865
390.892
390.920 | 273883
273732 | .353
.153
.153 | 1.57E+08
8.44E+C7
8.44E+C7
7.68E+C7 | 394.
394.
395. | 75 247 | 7478
7163
982 | 15.391 | 1.06F+10
1.09E+10 | ĺ | 398.97
393.99
399.02
399.07 | 7 22062
22031 | 7 262.1 | 24 Z.42E+
25 3.70E+ | !! [| 403.022
403.070
403.097
403.125 | 194456
194145
193969
193793 | 1000.000
1000.000
1000.000 | 1.076+12 | | | 393.967
393.994
341.622
391.669
391.097 | 273213
273036
272860
272551
272373 | .143
.417
.573
.843 | 2.31E+C8
3.21E+C8
4.72E+C8 | 395. | 78 246
C5 246 | 304 | 16.484
16.254
15.635
15.635 | 1.14F+10
1.12F+10
1.07E+10
1.09E+10 | | 399.10.
399.17
399.17
399.20 | 22014 | 1 325.01
3 299.21
4 236.21
0 207-11 | 27 3.76E.
13 3.41E.
26 2.57E. | !! | 403.172
403.200
403.227
403.275 | 193486
193309
193133
1928:1 | 1000.000 | 1.01E+12
1.01E+12
1.01E+12 | | | 371.124
391.172
371.199 | 272196
271887
271712 | .900
.900
.650 | 5.06E+CP
5.05E+C8
4.78E+C8
3.83E+CP | 395.
395.
395. | | 810
629
647 | 15.823
17.956
20.520
23.195
26.148 | 1.09E+10
1.26E+10
1.47E+10
1.70E+10
1.95E+10 | | 399.27
399.30
399.30 | 21902 | 5 170.74 | 7 1.95E. | !! | 403.302
403.330
403.377 | 192677
192502
192195 | 1000.000 | 1.01f+12
1.01f+12
1.01f+12
1.01f+12 | | | 371-227
331-275
391-303
391-331 | 271537
271255
271074
27(892 | .643
.747
.863 | 3.60F+C8
4.16E+C8
4.84E+C8
4.84F+C8 | 395.
395.
395.
395. | 85 244 | 951 | 27.206
26.148
27.579
19.964 | 2.04E+1C
1.95F+1C
1.68E+10
1.43E+1C | | 399.38 | 21836 | 1 342.30 | 2 3.43E+1 | 11 | 403,405
403,432
403,489
403,508 | 192017
191640
191526
191350 | 1000.000
1000.000
1000.000 | 1.00E+12
1.00E+12
1.00E+12
1.00E+12 | | | 391.408
391.408
391.435 | 270575
270398
270229 | .867
.939
.993
.523 | 5.11E.OH
5.59F.C8
5.19F.CP
5.51E.CP | 395.4
395.4
395.5 | 89 243
15 263 | 778
598 | 17.700 | 1.246+10 | | 399.486
399.51
199.536
399.586 | 217344 | 3.03.58 | 9 3.59E+1
2 3.41E+1
6 3.74E+1 | 1 | 403.535
403.583
4)3.611 | 191350
191171
190857
190678
190498
190183 | 1000.000 | 1-0CE+12
1-0CE+12
1-00E+12 | | | 341.483
391.511
391.538
391.586 | 269908
269730
269551
269238
269260 | 1.047 | 5.78E+08
5.91E+08
5.64E+08
6.44F+08 | 395.5 | 90 243
18 242 | | 20.790
25.890
29.364
33.937 | 1.50E+10
1.93E+10
2.23E+10
2.65E+10
2.65E+10 | | 399.641
399.641
399.689
399.716 | 216858
216678
216361 | 282.30
299.31
303.58 | 5 3.12E-1
3 3.34E-1
2 3.39E-1 | 1 1 | 403.686
403.713
403.741 | 190183
190004
189825
189495 | 1000.000 | 1.006+12
9.99F+11
9.98F+11
9.98F+11 | | | 371.613
371.641
391.69F
391.716 | 268982
268569
268398 | 1.128 | 6.35E.CB | 395.6
375.7
395.7 | 9 2421 | ስል ሴ | 33.937
36.267
34.516
31.322
27.737 | 2.87E+10
2.70E+10
2.4CE+10
2.08E+10 | | 399.744
399.791
199.8[9 | 216005
215675
215696
215315 | 286.54
258.27
243.37 | 7 3.16E+1
8 2.79E+1
7 2.59F+1 | i | 403.7F8
403.816
403.843
403.891 | 189334
189124
188809 | 1000.000
1000.000
1000.000
750.000 | 9.97E+11
9.95F+11
7.31E+11 | | | 391.791
391.791
391.919 | 267865
267865
267685
267504 | 1.225 | 7.48E+CP
7.CBE+CB
7.22E+CA | 395. 8
395. 8
395. 8 | 0 241 | 70 | 27.471
26.148
27.737 | 2.C6E+10
1.94E+10
2.C8E+10 | Į | 399.894
399.921
399.949 | 214998 | 290.00 | 3.17F+1
3.94E+1
4.60E+1 | | 403.919
403.546
403.994
404.022 | 188450
188450
188137 | 540.000
540.000
527.500 | 6.15E+11
5.11E+11
4.98E+11 | | 1 | 391.894
391.922
371.949 | 267185
267016
260830 | 1.405 | 7.58E+C8
6.81E+C8
7.43E+C8
7.52E+C8 | 395.9
395.9
396.0
396.0 | | 713
998
717 | | 2.74F+10
2.39F+10
2.55E+10
2.61E+10 | | 399.996
430.024
430.051
430.097
430.126 | 214039
214324
214143
213962
213645
213466 | | 5.856·1
5.436·1 | 1 | 404.049
404.097
404.124
404.152 | 187780
187470
187294
167119 | 520.039
725.000
1300.030
1000.000 | 5.946+11
7.036+11
9.946+11
9.946+11
9.946+11 | | | 191.997
172.025
192.052
192.100 | 266339
266161
265850 | 2.335 | 1.11E+09
1.12E+09
1.31E+09 | 396.1
396.1 | 3 2391
0 2399
4 2391 | 119 | 33.937
35.389
36.267
38.930 |
2.676.10
2.776.10
2.656.10
3.116.10 | | 400.126
400.154
400.201
400.229
400.256 | 213466
213266
212971
212790 | 350.00
325.00
270.00
290.00 | 3.90F • 1
3.57E • 1
2.87E • 1 | 1 | 434.199
404.227 | 186912
185636
186485 | 1000.000
1000.000 | 9.94F-11 | | | 372.128
1+2.155
192.203
572.231 | 265850
265672
265496
265187
265C11 | 2.050 1
2.050 1 | 1.15E.09
1.15E.09
8.74E.CB | 396.20
396.21
396.20 | 7 2388 | 70 | 46.150 | 3.82F+10
4.19F+10
4.55E+10
3.97E+10 | | 400.304 | 212609
212292
212113 | 325.000
375.000 | 3.55E+1
4.17E+1 | 1 | 424.302
404.330
404.357
404.405
404.432 | 185824 | 1000.000
1000.000
1000.000 | 9.946+11
9.936+11
9.936+11 | | | 192.258
192.306
192.333 | 264860
264552
264327 | 1.492 6 | 3-41E+C8
3-51F+C8 | 396.31
396.41
396.41 | 5 2351
3 2379
0 2376 | 75
97
85 | 42.070
38.930
35.097 | 3.42F+10
3.12F+10
2.75E+10 | | 403.350
403.406
400.433
400.461 | 211933
211619
211440
211260 | 345.603
345.003
345.003
345.003
432.503 | 4.4CE+1 | : | 404.460
404.507
404.535 | 185138
185162
184953
184674 | 950.000
820.000 | 9.40F+11
9.03F+11
6.15F+11
5.42F+11 | | | 192.4C8
172.436 | 264202
263994
263717
263539 | | .15E+C9
.53E+C9
.C4F+09
.C2F+C9 | 396.46
396.56
396.56 | | 20 | 35. 973
41.065 | 2.70E-10
2.84E-10
3.53E-10
4.40E-10 | | 400.508
400.536
400.563 | 210945
210764
210583
210266 | 432.500
445.000
515.000
515.000 | | | 474.562
404.610
434.637 | 184495 | 570.000
565.000
725.000
895.000 | 5-58F+11
7-02F+11
8-81F+11
9-92F+11 | | ĺ | 192.511
192.539
192.566
192.614 | 263227
263648
262869
262554
262374 | 2.797 1 | .57E+05
.57E+05
.50E+05
.40E+09 | 396.61 | 2365 | 54
79 | 85.407 | 5.55F.1C
8.0FF.1D
6.25F.10
7.17-10 | | 400.618
400.666
400.713
400.740 | 210087
209907
209903
209413 | 455.003
445.003
385.003
325.003 | 4.95E+11 | | 404.712
434.749
404.767
404.815 | 1833330 1
183136 1 | 1003.000 | 9.92E+11
9.92E+11
9.92E+11 | | | 3+2.642
192.669
192.717
372.745 | 262374
262194
261878
261697 | 2+697 1
2+423 1 | .52E+C9
.95E+C9 | 396.71
396.74
396.77 | 7 2356
5 2155
2 2351 | 97
21
70 | 58.518
52.471 | 5.11f+10
4.47f+10
4.16f+10
4.05f+10 | | 400.815
400.842 | 209234
208920
208740 | 350, CO3 | 3.43E+11
3.72E+11 | | | 182820 1 | 1909-000
1909-030
1009-000 | 9.91E:11
9.91F:11
9.91F:11 | | | 3+2.772
3+2.820
342.848 | 261491
261175
260994 | 3.839 2 | .21F+09
.91E+09 | 376. P4
396. 67 | 234R | 98 (| 54.371 | 5.35E+1C | | 400.879
400.917
400.945
430.972 | 208561
208246
208065
207883 | 465.003
570.003
600.003
585.003 | 5.13E+11
6.44F+31
6.80E+11
6.60E+11 |)) | 404.870
404.517
404.545
404.672
405.020 | 181455
181753
181456 | 157.000 | 1.32F+11
9.08E+10 | | | 192.523
192.551 | 26050C
260321
260162 | | .27E+C9
.58E+09
.62E+09
.64E+C5
.58E+09 | 396.95
396.97
397.02 | 2340 | 22
45
36 | 64.834
67.038 | 5.76E+10
5.07E+10 | | 401.020
401.048
401.075 | 207566
207385
207203
206887
206707 | 515.003
455.003
465.003 | 5.69E+11
5.43E+11
5.05E+11
5.03E+11 | | 405.C75
405.123 | 181103
180796
180605 | 50.000
41.000
31.000
28.330 | 3.71E+1C
2.99E+1C
2.21E+10
2.0CE+1C | | | 393.026
393.053
333.081
353.128
333.156 | 25983C
259653
259477
259169
258992 | | .59E.09
.51E.09
.71E.09 | 397.09
397.12
397.15
397.16 | 23336 | 90 0 | 9.188 | 7-4#F+10
7-4#F+10 | - { | 431.123
401.150
431.178
431.225 | 206528 | 465.003
495.003
495.003 | 5.38E+11
5.37F+11 | | 435.178
405.225
405.254
405.281 | 180424
180126
179913
179732
179416 | 25.500
25.500
31.000 | 1.79F+10
1.6CE+10
1.79E+10
2.21F+10 | | | 313.156
353.163
173.231
173.259 | 258992
258816
258507
258356 | 4.488 2.
4.207 2. | .55[.C9
.626.C9
.446.C5 | 397.23
397.25
397.28 | 23239 | 1 6 | 89. LBA 6 | -23F+10
-72F+10
-43F+10
-24E+10 | | 401.253
401.280
401.328
401.355 | 206037
205850
205534
205334 | 480.000
445.000
420.000
420.000 | 5.16E+11
4.72E+11
4.41E+11
4.37E+11
4.53E+11 | | 405.281
405.329
405.356
405.356
405.384
405.431
405.459 | 179416
17923#
179059
178747 | 20.000
16.750
13.700 | 1.3PE-10
1.14E-10
9.17E-09
7.77E-09 | | l | 193.266
173.374
143.361 | 25818C
257872
257697
257522 | 5.(R9 3.
6.87) 4. | 19E+09 | 397.33
397.36
397.38
397.43 | 23152 | 8 6 | 13.497 5
11.374 5 | . B2E + 10
. 59E + 10
. 36F + 10 | | 401.430
401.458
401.485 | 205175
204860
204675
204497 | 432.503
527.503
400.003
750.003 | 4.53E+11
5.65F+11
6.50E+11
8.32E+11 | | 405-486 | 178564
178390 | 11.700
11.700
9.250 | 7.77E.00 | | | 173.389
173.436
193.464
173.491 | 257213
257035 | | .66F.05
.24E.09
.50F.09
.28F.09 | 397.43
397.46
397.436
397.53
397.53 | 23035 | 4 14 | 5.995 9
5.518 1 | .08E+10
.17E+10
.51E+11 | | 401.533
431.560
401.548 | 204181
204001
203822
203508 | 770.003
770.003
700.003
515.003 | 8.52F+11
8.50F+11
7.63E+11
5.39E+11 | | 405.589 | 177899
177722
177411
177234 | 7.000
5.900
3.950
1.560
2.580 | 4.54E.09
3.8CE.09
2.51E.09
1.22E-09 | | П | 193.519
193.567
193.594 | 250544
25(365
256186
255871 | | 43E+39
43E+C\$
46E+09
87E+C\$ | 317.59
397.64
397.66
397.69 | 22967
22967
22949 | 14 11 | 4.085 1
5.365 1 | •756 •11
•14F•11 | | 491.652 | 203328
203149
202834
202640 | 465.000
465.000 | 4.78E+11 | | 435.652
405.740
405.768
405.795 | 177058
176750
176574
176398 | 2-130 | 1.335.09 | | | 93.642
93.670
93.697
93.745 | 255871
255691
255510
255194
254390 | 7.521 4.
8.727 5. | 23F+05
64E+05
49F+C9
67E+05 | 397.741
397.771
397.771 | 22899
22859
22862 | 1 8 | | -55E - 10
-77E - 10
-01F - 10
-17E - 10 | | 401.737
+01.765
+01.765
+01.840
+01.868
+31.895 | 202640
202459
202143
201963
201783 | 530.003
515.003
527.503
515.003 | 5.13E+11
5.27E+11
5.41E+11
5.25E+11
5.24E+11 | | 405.870 | 176398
176093
175920
175747
175445 | 10.730
10.950
10.950
11.700 | 1.80f+C9
6.76F+C9
7.31F+C9
7.37E+D9
7.86F+D9 | | Ľ | #3.820
meter = 0 | 254811 | a. 484 5. | 676+09 | 397. 677 | 72830
22812 | 6 10 | 0.222 9
6.169 1 | .59E+11 | Ĺ | 431.895 | 2017#3 | 515.000 | 5.24E+11
5.22E+11 | | 405, 945 | 175272 | | 8.11E+C8 | | ELAPSED
TIME,
SECCHDS | ALTITUDE.
FEET
(e) | CURRENT,
MICROAMPS | ELECTRON
DENSITY.
ELECTPONS
PER CUBIC
CENTEMETER | ELAPSEC
TIPE,
SECONDS | ALTITUDE
FEET
(a) | . CURRENT.
MICROAMPS | ELECTRON
OERSITY.
FLECTRONS
PER CUBIC
CENTIMETER | | ELAPSED
TIME,
SECCNOS | ALT STUDE
FEET
(a) | , CURRENT,
HICROAMPS | ELECTRON DENSITY, ELECTRONS PER CUBIC CENTINETER | | ELAPSED
TIPE,
SECONOS | ALTITUDE,
FEET
(a) | CURRENT, | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMÉTER | |--|--------------------------------------|-------------------------------------|--|--|--------------------------------------|--------------------------------------|--|-----|--|--------------------------------------|--|--|---|--|--------------------------------------|--------------------------------|--| | 389.743
389.770
389.757 | 281235
281086
280911 | .100
.100 | 5.42E+C7
5.40E+C7
5.40E+C7 | 393. 651
393. 878
393. 906 | 254475
254295
254115 | 14.379
14.229
15.181 | 9-636+09 | | 357.904
357.952
397.979 | 227926
227614
227435 | 170.742
170.742
164.085 | 1.60E+11
1.60E+11
1.52E+11 | | 401.974
402.001
402.049 | 201270
201094
200785 | 1000-000 | 9.34E+11
9.33E+11
9.30E+11 | | 389.770
389.757
389.845
389.872 | 280604
280427 | .100
.140
.120 | 5.40E+C7
5.40E+C7
7.56E+C7
6.49E+C7 | 393.904
393.954
393.981 | 254115
253801
253622 | 16.029 | 9.63E+C9
1.02E+10
1.08E+10 | | 397.979
398.057
398.055 | 227257
226946
226770 | 167, 385 | 1.566.11 | | 402.076
402.103 | 200608 | 1000-000 | 9.24E+11 | | 389.900
389.548
389.975 | 280250
279939
279761 | .100
.100 | 5.41E+C7
5.41E+07
5.42E+C7 | 394.007
394.057
394.084 | 253444
253133
252957 | 16.719
15.391
14.772 | 1.08E+10
9.79E+09
9.35E+09 | 1 | 378.082
358.109
394.157
398.184 | 226770 | 207.116
219.222
229.276
229.274 | 2.00E+11
2.14E+11
2.25E+11
2.25E+11 | | 402-151
402-178
402-206 | 200125
199948 | 975-000 | 9.24E+11
B.9RE+11 | | | | .113
.123 | | 304.313 | | | | | 398.184
396.211 | 226594
226287
226112
225937 | 229.274 | | | 402-254 | 199772
199489
199315 | 620.000
600.000 | 7.44E+11
5.29E+11
5.67E+11 | | 390.051
390.078
390.105 | 279271
279093
278915 | -110 |
6.52E+C7
5.58E+C7
6.53E+C7 | 394.159
394.186
394.214 | 252473
252297
252120 | 13.909
13.939
14.772 | 8.74E+09
8.74E+09
9.36E+09 | | 398.211
398.259
398.286
378.314 | 225657
225481
225304 | 213.707
174.159
160.645
154.539 | 1.62E+11
1.47E+11
1.41E+11 | | 402.308
402.356 | 199141 | 640.000
655.000
750.000 | 5.80E+11
6.71E+11
7.39E+11 | | 390.153
390.180 | 278603
278425
278246
277919 | .143
.150 | 7.63E.07
6.17E.07 | 394.262
394.289
394.316 | 251638
251664
251489 | 17.200
19.964
22.757 | 1.11E+10
1.32E+10
1.53E+10
1.75E+10 | 1 | 378.314
398.362
398.389
398.416 | 225304
224996
224820 | 154.539
154.539
181.659
207.116 | 1.41E+11
1.40E+11
1.69E+11
1.98E+11 | | 402.383
402.411
402.459
402.486 | 198656
198479
198169
197992 | 975.000
1000.000 | 7.39E+11
8.90E+11
9.13E+11
9.17E+11 | | 390.207 | 277919 | .305
.219 | 1.216+08 | | | | 1.756+10 | | 398.416 | | 207.116 | 1.98E+11
2.79E+11 | ļ | 402.486 | | 1000-000 | 9.17F+11 | | 390.282
390.310
390.358 | 277737
277556
277240 | .188
.226
.198 | 1.04E+08
1.25E+C8
1.09E+C8 | 394.391
394.415
394.467 | 250827
250516 | 24.620
22.530
16.957 | 1.07E+10
1.51E+10
1.09E+10 | | 398.464
398.491
398.519 | 224335
224157
223979 | 278,073
312,143
307,859 | 2.79E+11
3.19E+11
3.14E+11
2.83E+11 | | 402.513
402.561
402.588 | 197505
197328 | 1000.000
1000.000 | 9.1CE+11
9.09F+21 | | 390.385
390.412
390.460 | 277060
276881 | -219
-219 | 1.22E+C8
1.22E+C8 | 394.494
394.522
394.570 | 250338
250159 | 14.974
14.974
14.574 | 9.51E+C9
9.51E+C9
9.51E+C9 | 1 | 398.567
398.594
398.621 | 223666
223489
223311 | 282.305
243.377
236.226 | 2.83F+11
2.38E+11
2.29F+11 | | 402.615
402.663
402.690 | 197150
196837
196056 | 1000.000
1003.000 | 9.08F+11
9.07F+11
9.07E+11 | | 390.487
390.515
390.563 | 276566
276384
276203 | .263
.322
.394
.374 | 1.45E+08
1.79E+C8
2.23E+C8 | 394.591 | | 16-957 | 1.106.10 | | 375.669 | 222998 | 219.222 | | | | 104474 | 1000 000 | | | | 276203
275883
275697 | 374 | 2.CBE+08 | 394.672 | 249491
249178
248997 | 23.404 | 1-58E+10 | | 318.669
398.656
398.723
398.771 | 222641 | 236.226 | 2.10E+11
2.29E+11
2.32E+11 | | 402.766
402.793
4)2.820 | 196135
195955
195776 | 980.000
922.500
857.500 | 8.87E+11
8.30E+11
7.67E+11 | | 390.668
390.694
390.720 | 275192
275021 | .344
.413
.541 | 2.286+08
3.006+CR
3.086+C8 | 394.721
394.775
394.802 | 248816
246488 | 25.377
26.670
25.123 | 1.836+10
1.71E+16 | | 398.798
398.825
398.873 | 222122
221944
221630
221451 | 264.029
262.128
239.775 | 2.62E+11
2.57F+11
2.31E+11 | | 402.868
402.895
402.923 | 195463
195283
195104 | 595.000
975.000 | 8.03E+11
8.80F+11
9.C4E+11 | | 390.720
390.766
390.793 | 274850
274534 | .703
.670 | 3.83E+C8
3.66E+C8 | 394.802
394.829
394.877 | 248309
248129
247814 | 24.620
23.195
23.633 | 1.56E.10
1.56E.10 | | | 221451 | 232 725 | | | 402.929
402.571
402.998 | | 1000.000 | 9-03E+12 | | 390-821 | 274353
274172
273658 | .633
.573
.473 | 3.44E+08 | 394.904 | 247635 | 73. ATA | 1.62E-10 | | 398.928
378.976
399.003 | 221271
220959
220782 | 243,377
269,977
307,858 | 2.35E+11
2.64E+11
3.07E+11 | | 403.026 | 194612
194431
194123 | 1000.000 | 9.02E+11
9.02E+11
9.01E+11 | | 390.894 | 273679 | • 470
• 543 | 2.54E+C8 | 394.979 | 247140
246959 | 24.620
25.633
26.464 | 1.75E.10
1.81E.10 | | 399.078 | 220296 | 344.541
409.60d | 3.528+11
4.268+11
4.098+11 | | 403.101 | 193771 | 1200.000 | 9.01E-11 | | 390.971
390.998
391.025
391.073 | 273191
273014
272838 | .513
.643
1.000 | 2.77E+C6
4.56E+C8
5.43E+CR | 395.034
395.082
395.109 | 246778
246461
246282 | 26.148
25.377
24.371 | 1.795.10 | | 399.105
399.133
379.181
399.208 | 220118
219941
219633
219458 | 365.142
381.574
299.311
273.979 | 4. C4E +11
3.92E+11
2.95E+11 | | 493.176
433.203
403.231 | 193464
193287
193111
192829 | 1000.000 | 9.00F+11
9.00F+11
8.99F+11 | | 391.073 | 272524 | 1.360 | A 825458 | 1 205 136 | 244102 | 26 890 | 1.66F+10
1.77F+10
2.05F+10 | 1 | 399.208
399.235 | 219458
219284 | 273.977 | 2.06E+11
2.32E+11 | | 403.271
403.279
403.306 | 192429 | 1200-020 | 8.99[1] | | 391.100
391.128
391.176 | 272351
272173
271865 | | 7.30E+C8
7.03E+C8
6.49E+08 | 395.184
395.211
395.239 | 245787
2456C6
245425 | 29.364
32.499
37.445 | 2.05F+10
2.10F+10
2.71E+10 | | 399.235
395.283
399.310 | 219284
219003
218876 | 243.377
232.725
254.479 | 2.20F+11
2.43F+11
2.79F+11 | | 403.333
403.381 | 192655
192480
192172 | 1000.000 | 8.99F+11 | | 391.203
391.230
391.278 | 271690
271516
271232 | 1.130 | 5.69E+C8 | 395.281
395.314
395.341 | 245108
244929
244749 | 44.764
45.110
42.430 | 3.36E+10
3.39E+10 | | 199.318
199.386
379.413 | 21865C
218341
218165 | 286.547
364.654
390.402 | 2.79E+11
3.67E+11
3.57E+11 | | 433.408
403.436
403.484 | 191995
191817
191506 | 1000.000 | P. 48E + 11
8.98E + 11
8.97E + 11 | | 391.306
391.335
391.384 | | 1.120 | 6.41E+C8
7.05E+C8 | 395.385
395.416
395.446 | 244253
244253
244072 | 35.097
30.756 | 3.15E+10
2.51E+10
2.16E+10 | | 379.440
399.488 | | | | | 401-511 | 10117 | 1000.000 | # 07E + 11 | | | 270869
270553
270376 | 1.204 | C-54E+C8 | | | 28.035 | | | 399.440
399.515
399.515
399.590
399.617
399.645 | 217681
217504
217327 | 395.142
365.971
372.601 | 4.016.11
3.906.11
3.746.11 | | 403.539
403.587
403.614 | 191148
190935
190655 | 1000.000 | 8.90F+11
8.90F+11 | | 391.439
391.487
391.514 | 27C198
269986
269708 | 1.485 | 8.05E+C8
8.59E+C8
9.15E+08 | 395.519
395.546
395.594 | 243576
243396
243381 | 29.364
31.927 | 1.946+10
2.056+10
2.956+10
2.956+10 | | 399.590 | 217015
216835
216555 | 372.801
372.871 | 3.686.11
3.726.11
3.876.11 | | 403.690
403.717 | 190475
190160
189981 | 1000.000 | 8.95F+11
8.95F+11
8.95(+11 | | 391.542
391.590
391.617 | 269529
269216 | 1.636 | 9.15E+CB
8.87E+CB | 395.621
395.649 | 242909
242719 | 40.135
47.588
55.141 | 2.951.10
3.61E.10
4.30F.10
4.54F.10 | | 399.693
399.720
139.747 | 216341
216162
215982 | 395.142
385.571
377.186 | | | | 1 = 5 = 5 3 | 1707.000 | | | 391.617 | 269C3E | 1.142 | 9.44E+CB | 395.691
395.724
395.751 | 242402 | 57.727
53.989 | 4.54F+1C
4.195+10
3.78E+10 | } | 179.747 | 215982
215655
215473 | 377.184
342.305
337.575 | 3.85F+11
3.74E+11
3.34E+11 | | 403.792
403.819
403.847 | 189462
189282
189101 | 1003-000 | 8.946 • 11
8.946 • 11
8.936 • 11 | | 371.644
351.652
391.719 | 268366 | 2.004
2.034
1.504 | 1.106+09 | | 242043
241728 | 49.533 | | | 377.795
349.822
199.850 | 215292 | 725.027 | 3.29F+11
3.14E+11
3.85E+11 | | 433.895
433.922
403.950 | 188786 | 1000.000 | 8.93f •11
8.93E •11 | | 391.747
391.795
391.822 | 268184
267843
267662 | 2.512
2.142
2.192 | 1.36E+09
1.16E+09
1.19E+09 | 395.824
395.854
395.902 | 241547
241366
241049 | 40.453
38.037
41.743 | 2.97F+10
2.76F+10
3.08E+10 | | 199. 898
199. 925
199. 952 | 21497£
21479£
214617
214307 | 3 90. 000
44 0. 000
4 70. 000 | 4.41E.11
4.75E.11 | | 403,958
404,025 | 189428
188115
187936
187758 | 980.000
1003.000 | 8.73F • 11
8.73F • 11
8.92F • 11 | | 301 680 | | 2.207 | 1.20E+C9
1.23E+O9
1.27E+C9 | 395,929 | 24.06.00 | 44.764 | 3 355410 | | | 214307 | | 5-88E+11
6-05E+11 | | | 107758 | | 8.92E+11 | | 391.898
391.935
391.953 | 267167
266987
2668CP | 2.207
2.277
2.354
2.412 | | 396.004
396.031 | 240175 | 49.503 | 3.64F+1G
3.77E+1D
3.90E+10 | | 400.027
430.055
430.103 | 214120
213939
213623 | 585.003
555.003
465.003 | 5.69F+11
4.65E+11
4.27F+11 | | 404.1C1
404.17#
404.135 | 187448
(87273
187097 | 1000.000 | 8.916.11
8.916.11 | | 342.001
392.028
392.036 | 266495
266317
266139 | 3.460
4.207
4.713 | 1.88E+09
2.31E+09
2.61E+09 | 396.059
396.107
396.134 | 240013
239696
239517 | 57.848
53.789
57.090 | 4.18E+10
4.18E+10 | | 400.130 | 213443
213264
212949
212767 | 432,503
420,003
385,003 | 4-13f-11
3-73E-11 | | 404.203
404.230
404.258 | 186790
186614
186463
186155 | 1000.000 | 8.91F+11
8.91F+11
F.91F+11 | | 392.104
392.131 | 265628
265651
265474 | 4.650 | 2.58F.C9 | 396.161
396.200
376.230 | | 61.793
74.550 | 4.91E+10
6.13F+10
6.93F+10 | | 430 232 | 212767
212586
212270 | 355.000
420.003 | 3-836+11 | | 404.376 | 185979 | 1000.000
1000.000 | 8.91F+11
8.91F+11 | | 392.159 | | 1.423 | 7.485.00 | | | 83.272 | 6.93E+10
7.90E+10 | | 430.260
430.308
430.335 | | 465.003 | 4-36[-11] | | 404.761 | 185492 | | 8-916-51 | | 392.234
392.262
372.310 | 264989
264838
264530 | 3.103
3.497
3.202 | 1.58F+09
1.90E+09 | 396.317
396.339 | 238312
238153
237975 | 72.936
65.689
58.518 | 7.006.10
5.976.10
5.276.10
4.596.10 | : i | 400.410 | 211911
211597
211417 | 495.00)
480.00)
495.00) | 4.90F+11
4.77E+11
4.88E+11 | | 404.436
404.463
404.511 | 185316
185140
184530 | 1000.000 |
8.91F+11
8.91E+11
8.90F+11 | | 392.337 | 264355
264180
263972 | 4.037
4.769
6.172 | 2.215+09 | 396.414 | 237486
237486
237309 | 52.095 | 4.00E+10 | | 400.362
400.410
400.437
400.464
430.512 | 211238
210741 | 455.00)
527,500 | 4.876.11
5.216.11
5.506.11 | | 414.538 | 184651
184472
184159 | 1000.000 | 8.90E+11
8.90E+11
8.90E+11 | | 392.337
392.364
372.412
372.439 | | 6.172 | 2.65E+09
3.50E+09
3.94E+09 | | | 52.848
55.528
64.529
83.973 | | | 400.579 | 210741 | 555.003
655.001 | | | 404.614 | | | | | 392.467
392.415 | 263516
263204
263025 | 6.873
7.122
6.50+ | 4.09E+C9
3.71E+C9 | 396.516
396.543
396.577 | 236820
236642
236112 | 83.973
96.855
117.427 | 5.63F.10
7.05F.10
8.75F.10 | | 400.647
400.647 | 21C569
21C244
210064
209885 | 670.003
655.033 | 6.75E + 11
6.57E + 11 | | 404.66A
404.716 | 18 18 02
18 34 88 | 1001.000 | R. 90F - 11
B. 90F - 11 | | 392.570
392.618 | 262846
262532 | 5.603
5.523
5.375 | 3.10E .09 | 396.646
396.671
396.721 | 236157
235981 | 129-116 | 1.18E+11
8.81E+1C | | 430.669
400.717
400.744
430.771 | 209391
209391 | 495.003 | 4.78E.11
4.34E.11 | | 404.771
434.819
404.846 | 183114
182797
182618 | 1003.300 | 6.91F+11 | | 392.645
392.673
192.721 | 262352 | | 3.01E+09
2.92E+09
2.97E+09
3.71E+09 | 396.721
396.748
396.776 | 235675
235499 | 86.141
77.444
75.677 | 7.25F+10
6.35F+10
6.21E+10 | | +20.771 | 209211
208897
208718 | 465-003 | | | 404.846 | 182638 | 1000.000 | 8-916-11 | | | 261855
261674
261468 | 5.300
6.504
6.995 | 4-02E+09 | | | | | - 1 | 400.819
400.846
430.873 | 208718
208538
208223 | 515.003 | 4.42E+JJ
4.94E+JJ
5.52E+JJ | | 404.873
404.921
404.948
404.975 | 182123
181942
181761 | | 8.91E+11
8.91E+11 | | 392.776
392.824
392.851 | 2611 #2
26C972 | 6.995
6.995
7.253 | 4.02E+09
4.02E+09 | 396.851
396.879 | 234863
234686
234376 | 76.845
84.684
95.135 | 6.32E+10
7.09E+10
8.14E+10 | | 430.921
430.948
430.976
431.024
431.051 | 208042 | 725.000
820.000
755.000 | 8-20E+11
7-90E+11 | | 405.024 | 181443 | 1000,000
515.000
395.000 | 4-37F-11
3-28F-11 | | 392.879
392.927
392.554 | 260792
260477
260298 | 7.521
7.617
8.551 | 4.36F.09
4.42E.09
5.03F.09 | 396.927
396.959
396.981
397.029 | 234200
234023
233714 | 97.715 | 8.39E+10
8.39E+10 | | 401.024 | 207343 | 750.003 | 7.39E+11
7.10E+11 | | 405.079
405.127 | 181081
180764
180582 | 270.000 | 2.17E+11
9.90E+10 | | 392.954
392.982
393.030 | 260298
260119
259808 | 9.565 | 5.03E+C9
5.69E+09
6.52E+C9 | 197.056 | 233714
233537
233359 | 99.935 | 8.47E+10
8.47E+10
8.57F+10 | | 431.127 | | 700.003
685.003
700.003 | | | 405-134 | | 112.000
80.000
65.000 | 8 - 26 F + 1 C | | 393-057 | 259808
259631
259455
259147 | 9.565
10.796
10.560
10.486 | 6.63E+C9 | 397. CA1
397. 131 | 233047 | 103.518
117.427
131.710 | | | 431.127
401.154
431.181 | 206864
216685
206505
206190 | 750.003 | 6.63E-11
6.78E-11
7.30F-11
7.75E-11 | | 405.230
405.257
405.285 | 179990
179709 | 66.000
75.000 | 4.54E+10
4.62F+10
5.32F+10 | | 393.132
393.159
393.187 | 255147
25897C
258794 | 7.758 | 5.15E+09
4.52E+09 | 397.186 | 232666
232371 | 139.797 | 1.196.11
1.286.11
1.316.11 | | 401.729
401.256
401.284 | 206009
205828
205511 | 700.003 | 7.75E-11
6.73E+11
6.56E+11 | | 405.333
405.360
405.387 | 179394 | 43.000 | 2.91F.10
2.04E+10 | | | | 7.617
7.253
8.058 | 4.43F.C9
4.20E.C9
4.72E.C9 | 397.261 | | 126.571
115.365
95.995 | | | 431.312 | 205511
265132
265152 | 570.000
630.000
640.000 | 5.345+11 | i | 405,387
405,435
405,462 | 179037 | 25.500 | 1-665-10 | | 393.262
393.290
393.338 | 258334
258158
257850 | 8.984 | 4.72E+C9
5.33E+09
7.58E+C9 | 397.336
397.363 | 221 222 | | 1-02E+11
8-17E+10
7-65E+10
7-64E+10 | | 401.372
401.359
401.36
401.434
401.461
401.597
401.597
401.609
401.609 | | 840.003
820.003 | 6.04E • 11
7.90E • 11
9.78E • 11 | | 405.490 | 178546
178367
178055 | 26.9C0
25.500 | 1.76f • 1C
1.60f • 1C
1.14F • 1C | | 393.365 | 257675
257560
257191 | 14.675
15.605
14.574 | 8.81F+09
9.91E+09 | 397.439
397.466
397.49 | 231005
230826 | 90.836
99.905
119.393 | 8.54E+10
1.06F+11 | | 431.489 | 204656
204475
20415P | 1010.003 | 9.76E+11
9.72E+11 | | 405.565
405.593
405.641 | 177877
177699
177389 | 15.500 | 9.776.C9
8.59E.C9 | | | 257191
257013 | 13.223 | 9.46E+09
8.22E+09 | 397.49
397.541 | 230646
230331 | 200+555 | 1.376+11 | | 401.564 | | 1000.003 | | | | 177389
177212
177036 | 7.000 | | | 393.467
393.495
393.543
393.570 | 257013
256835
256522
256343 | 13.223
11.876
10.796 | 7.28E+09
6.55E+09
6.18E+09 | 397.541
397.568
397.596 | 230331
230150
229969 | 213.707 | 2-105-11 | | 401.639 | 203799
203485
203306
203126 | 990.003 | 9-67E+11
9-63E+11
9-51E+11 | | 405.696
405.744
405.771 | 176729 | 7.650
7.000 | 4.26E.C9
4.87F.C9
4.26E.C9 | | 393.558 | 256163
255848 | 10.253
10.407
10.638 | 6.29E+09 | 397.671 | 229651
229470
229289 | 160.845
148.467
129.116 | 1.50E+11
1.36F+11
1.15E+11 | | 421.741 | 203126
202811
202617 | 960.003 | 9.14E-11
9.49E-11
9.47E-11 | | 405.799
405.847
405.874 | 176377 | 9.200
11.700
23.000 | 7.30F+09 | | | 255668
25548E
255172 | 11.683
13.046
13.909 | 7.16F.C9 | 397.747
397.774
397.802 | | 129.116 | 1.036.11 | | 401.796
401.844
401.871 | 202121 | 1000.000 | 9.47E+11
9.43E+11
9.41E+11 | | 405.874
405.901
405.549 | 175898
175726
175424 | 23.000
23.000
23.000 | 1-49E+10
1-50E+10
1-50E+10 | | 393.701
393.749
343.776
393.803 | 255172
254967
254788 | 13.909
14.239
14.772 | 8.72F+C9
8.56E+09
9.34E+39 | 397.802
397.850 | 228778
228597
228282
228104 | 129.116
154.539
164.085 | 1.15E+11
1.42E+11
1.53E+11 | Į | 401.871
401.899
401.947 | 201941
201761
201448 | 1000.003
1700.003
1000.000 | 9.41E+11
9.39E+11
9.16E+11 | | 405.549 | 175424
175250 | 7.650 | 1.50E+10
4.69E+C9 | | <u> </u> | 0,3040 feet | - | ******** | 3411.01 | 220104 | 14003 | | . 1 | -0104-1 | 201778 | | *************************************** | ļ | · | ELAPSED
FIME,
SECCIONS | | , CURRENT, | ELECTRON
DEASITY,
ELECTRONS
PER CUBIC | | ELAPSED
TIME:
SECCHOS | FEET | . CURRENT, | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC | 1 | ELAPSED
TIME,
SECONDS | FEET | E, CURRENT,
HICPOAMPS | ELECTRONS
DENSITY,
ELECTRONS
PER CUBIC | | ELAPSED
TIME.
SECCNOS | FFFT | . CURRENT. | ELFCTPON
CENSITY,
FLECTPONS
PER CURIC | |--|--------------------------------------|-------------------------------------|--|-----|--|--------------------------------------|--------------------------------------|--|-----|--|---|--|---|-----|--|--|--------------------------------------|--| | 389.746 | 281213 | .123 | 6.33E.07 | | 103 864 | (a)
254452
254272 | 14.574 | CENTIMETE
S-CIE+C9 | * | 397-907 | 227904 | 187.527 | CENTIMETE | 1 | 421-977 | (a)
201248 | 1000.000 | CENTIMETER
8-AAFAL) | | 389.773
389.800
389.648 | 280 582 | -143 | 7.38E.C7
7.31E.07
5.28F.C7 | | 393.882
393.909
393.557
393.565 | 254093 | 14.974
15.823
16.719 | 9.01E.09
9.58E.C9
1.02E.10 | | 397.955
357.983
378.010 | 227592
227413
227234 | | 1.58F+11
1.51F+11
1.57E+11 | | 402.004
402.052
402.079 | 201071
200763
200586 | 1000.000 | 8.65E+11
8.63E+11
8.62E+11
8.61E+11 | | 389.876
389.903 | 280405
280228
279917 | .132
.133 | 6.86F.C7
6.86F.C7 | | | 253600
253421
253111 | 16.719
17.956
17.700 | 1.10E.10
1.09E.10 | | 398.C58
398.085
398.112 | 226924
226748
226572 | 207-116
222-529
229-27- | 1.80F+11
1.55F+11
2.02F+11 | | 402.106
402.154
402.182 | 200411 | 1000.000 | R. 595+11 | | 389.979
390.006
390.054 | 279739
279560 | .133
.103
.142 | 6.86E+C7
5.28E+C7
7.39E+C7
7.33E+C7 | | 394.060
394.087
394.114 | 253111
252935
252759 | 16.719
15.605
14.772 | 1.02E+10
9.45E+69
8.89E+69 | | 378.160
398.187 | 226261
22609C | 250.727 | 2.246+11
2.106+11
2.016+11 | | 402.209
402.257
402.284 | 199750 | 1000.000 | 8.58F+11
4.58F+11 | | 390.CEL | 279248
279071
278893 | .140
.130 | 6.86E.C7 | | 394.162
394.190
394.217 | 252451
252275
252099 | 14.379
14.772
14.075 | 8.63E.C9
8.89E.C9
8.43E.C9 | | 398.214
398.262
398.290 | 225916
225635
225459 | 190.772
177.633 | 1.62F+11
1.49E+11 | | 402-311 | 199293
199119
198811 | 1020.000
1000.000
475.000 | 8.57E+11
8.57E+11
8.33E+11 | | 370.156
370.183
390.210 | 278581
278402
278224 | .203
.193 | 1.C6F+C8
1.O0E+C8 | li | 394.205
394.292
394.119 | 251816
251642 | 18.462
22.530
25.377 |
1.146+10
1.42f+10
1.63f+10 | | 35d. 317
378. 365 | 225459
225459
225482
2254974
224798 | 157.385
170.742
207.116 | 1.39E+11
1.42E+11
1.78E+11 | | 402.387
432.414
402.462 | 198534
198457
198147 | 1000.020 | 8.55E+11
8.55E+11
8.54E+11 | | 390.258
390.286 | 27789£
277715 | .285 | 1.50E+C8 | | 394.367 | 251160 | 27.471 | 1.92F - 10
1.79E - 10 | | 378.419
349.467
348.455 | 224623
224313
224135 | 272.725 | 2.03E+11
2.62E+11 | | 402.489 | 197970 | 1000.000 | 8.53F+11
P.5°E+11 | | 390.313
390.361
370.388 | 277534
277217
277038 | .203
.213 | 1. C7E • C8
1. 15F • C8
8. 61E • C7 | | 394.422
394.470
394.498 | 250405
250494
250315 | 24.371
19.217
16.029 | 1.55F.10
1.12E.1C
9.74F.C9 | | 348.522 | 223956
223644 | 325.027 | 2.85E.11
2.97E.11
2.70E.11 | | 402.564
402.571
402.618 | 197483
197306
197124 | 1000.000 | 8.57E+11
8.57E+11
P.51E+11 | | 390.415
390.463
390.491 | 276543
276543
276367 | -233 | 1.236+CB
1.59E+CB
2.186+OB | | 394.525
394.573
394.600 | 250137
247824
247647 | 16.254
15.823
17.448 | 9.90F.C9
9.61F+09
1.07F+1C | | 398.624
398.672 | 223466
223288
222976
222797 | | 2.29E.11
2.31E.11
2.08E.11 | | 402.666
402.694
402.721 | 196614
196634
196453 | 1000.000 | 8.51f+11
P.51f+11
8.50f+11 | | 390.518
390.567
390.555 | 27e181
275860 | -412
-371
-385 | 1.96E+CF
2.03E+CF | | 394.627 | 249469 | 21.558 | 1.36E.1C | | 393.699
399.726
398.774 | 222797
222618
222279 | 239.776
250.727
273.579 | 2.CaE • 11
2.19E • 11
2.42E • 11 | | 402.769 | 196112
195933
195754 | 1000.000 | 8.516+11
8.506+11 | | 390.555
390.671
390.657
390.723 | 275673
275170
275000 | .556
.600
.791 | 2.22E • C 8
2.94E • C 8
3.17E • C 6 | | 394.7C3
294.730
394.778 | 248975
248794
248465 | 29.089
29.639
28.545 | 1.94F - 10
1.94F - 10
1.86F - 10
1.74E - 10 | | 398.774
398.801
398.826 | 222279
222100
221921 | 273.579
278.C73
282.305 | 2.42E-11
2.46E-11
2.50F-11
2.29F-21 | | 402.823
402.871
402.899 | 195754
195441
195261
195081 | 1000.000 | 8.50F+11
8.50F+11
8.49E+11 | | 390.773
393.769
390.757 | 274829
274511
274330 | .791
.683
.733 | 4.17F.CR
3.59E+C8
3.86E+C8 | | 394.805 | 248286
248106
247792 | 26.933
25.377
25.377 | 1.636.10 | 1 | 398.876 | 221608
221426
221249 | 262.125
258.278
247.027 | | | 402.974
403.002 | 195081
[94768
194589 | 1000.000 | 8.49F+11
8.49E+11
P.49E+11 | | 390.624 | 274150
275835 | .563 | 3.64E.CE
2.96E.C8 | | 394.88C
394.9C7
394.934 | 247612
247612
247411
247118 | 26.438 | 1.63E+10
1.70E+10
1.8CE+10 | | 398.931
398.979
399.006 | 220760 | 303.582
333.653
359.691 | 2.13E.11
2.70E.11
3.00E.11 | Н | 403.029
403.077 | 194411 | 1300.000 | 8-485-11 | | 390.699
370.526
370.574 | 273657
273479
273165 | .543
.553
.501 | 2.65F.CF
2.91E.CF
2.64E.CF | | 394.987
395.010
395.037 | 247118
246936
246755 | 27.737
28.816
27.737 | 1.80F+10
1.89E+10
1.80E+10 | | 399.033
399.081 | 22G583
220274
220C96 | | 3.26E+11
3.62E+11 | H | 403.104
403.131
403.179 | 193925 | 1000.000
1000.000
1000.000 | 8.48E+11
8.48E+11 | | 371.001
331.628
191.076 | 272992
272816 | 1.653 | 4.81E.CR | | 395. C#4
395. 112
395. 139 | 246439 | 27.206
26.670
27.471 | 1.74E+10
1.72E+10
1.78E+10 | | 399.109
399.136
379.184 | 220096
219919
219611 | 409.6C#
399.924
32C.725
286.547 | 3.77E • 11
3.66E • 11
2.85E • 11 | | 403.207 | 193442
193265
193089 | 1000.000 | 8.47E+11
8.47E+11
8.47E+11 | | | 272506
272329
272151 | 1.227 | 6.44E+08
7.64E+C8
8.43E+CF | | | 246040
245765
245583
245402 | | | | 399.211
349.238
399.286 | 219436
219262
218981 | | 2.50E+11
2.26E+11
2.25E+11 | | 403.309
403.309 | 1928C7
192633
192458 | 1000.000 | 8.47E • 11
8.46E • 11
8.46E • 11 | | 371.131
371.179
391.206 | 271842
271568 | 1.603 | 6.43E.CE
6.76E.CB
6.13E.CB | | 395.215
395.242
395.290
395.217 | | 37.149
43.401
53.227 | 2.5GF - 10
3.0C5 - 10
3.81E - 10 | | 319.314 | 218804 | 262.128
262.305
307.654 | 2.45E+11
2.73E+11 | | 403.384 | 192150 | 1000.000 | 8.465.11 | | 391.233
391.282
391.310 | 271494
271210
271028 | 1.232 | 6.50F.C8
6.18F.C8 | | 395.344 | 244906
244727
244412 | 53.6C7
49.503
37.445 | 3.5CE-10
2.53E-10 | | 399.389
399.416
399.443 | 218319
218143
217967 | 377.184
414.511
429.462 | 3.39E+11
3.77E+11
3.92E+11 | | 403.439
403.487
403.515 | 191795
191483
191305 | 1000.000 | 8.45E+11
8.45E+11
8.45E+11 | | 391.338
391.387 | 27C446
27C531
27C353 | 1.240 | 0.55F+CP
7.33E+08 | - | 395.420
395.447 | 244230
244049
243733
243553 | 23.937
30.756
29.917 | 2.25F+10
2.02F+10 | | 399.491
399.518
399.545 | 217658
217482
217304 | 414.511
395.142 | 3.76F+11
3.56E+11 | | 433.542
403.590
403.618 | 191305
191126
190812 | 1000.000 | 8.45F+11
8.45F+11 | | 391.415
391.442
391.490 | 270176 | 1.384 | 7.31F.C8
8.35F.C8
9.18F.C8 | - 1 | 395.495
395.522
395.549 | | 32.499 | 1.96F • 10
2.156 • 10
2.39F • 10 | | 399.593 | 21699?
216813
216633 | 395.142
395.971
377.185
381.574 | 3.45E+11
3.45E+11 | | 403.645
403.663
403.720 | 190533
190453
190138 | 1000.000 | 8.446.11
8.446.11 | | 391.518
391.545
391.593 | 269685
2695C6
269194 | 1.753
1.780
1.780 | 9.24E+08
9.41E+08
9.41E+08 | | 395.557
395.625 | 243050
242877
242696 | 46.870
57.336
67.493 | 3.28E.10
4.15E.10
5.02F.10 | | 399.648
399.696
379.723 | 216318 | 404.746 | 3. ¢ Z E + 1 I | | 403.7-7 | 189750 | 1060.000 | 8.446.11
8.436.11 | | 391.620
391.647
391.655 | 26931¢
26883#
268524 | 1.87e
2.097 | 1.106.09
1.116.09 | 1 | 395.700
395.727
395.754 | 242389
242203
242921 | 68.647
63.066
56.658 | 5.12F.10
4.64E.10
4.10F.10 | | 379.750
379.798
399.876 | 215947
215632
215451 | 355.142
359.691
355.33+ | 3.52E+11
3.16E+11
3.11E+11 | | 403.823
403.850
403.898 | 189259
189079
188764 | 1000.000 | 8.43F+11
8.43F+11
8.435+11 | | 391.723 | 268137 | 2.555 | 1.326.09 | | 395.802 | 241706 | 47.588 | 3.34E • 10
3.19E • 10 | ĺ | 399.853
349.901
399.628 | 215270
214953
214774 | 430.003 | 3.02E+11
3.84E+11 | | 403.926 | 188594 | 1000.000 | 8-436-11 | | 391.758
391.826
391.853 | 26782C
267639
267459 | 2.477
2.457
2.244
2.244 | 1.30E.09
1.29E.05
1.16E.09 | | 395.857
395.905
355.932 | 241343
241027
240347 | 44.420
48.774
51.721 | 3.43E+10
3.43E+10
3.6PE+10 | ĺ | 199.955 | 214594
214594
214279
214098 | 460.003
490.003
585.000 | 4.14E+11
4.44E+11
5.39E+11 | | 404.001
434.029
434.056 | 188092
187714
187736 | 1000.000 | 8.42F+11
8.42F+11 | | 371.901
371.979
351.556 | 267144
266965
266786 | 2.452 | 1.13E.09
1.29E.C9
1.38E.09 | - 1 | 395.459
396.007
396.035 | 240568
240353
240171 | 56.307
58.917
58.917 | 4.C6F+10
4.2PE+10
4.2BE+10 | | 400.031
400.058
430.106 | 214098
213917
213600 | 670.000
640.000
540.000 | 6.26F+11 | | 404.131
404.138 | 187425
187251
187075 | 1000.000 | 8.42F+11
8.42F+11
8.42E+11 | | 392.004 | 266473 | 3.423
4.489
5.155 | 1.80E+C9
2.39F+09
2.77F+09 | | 396.062 | 239990
239674 | 63.066 | 4.38F+10
4.63E+10
5.08F+10 | | 470-133
470-160 | 213421 | 515.000 | 4.91E+11
4.65E+11
4.65E+11
4.14E+11 | | 404.206 | 186768
186592 | 1000.000 | 8.41F+11
8.41F+11
8.41F+11 | | 392.059
392.107
392.135 | 265876
265876
265629 | 5.441 | 2.77F+09
2.54E+09
2.66E+05 | | 396.137
396.164
396.212 | 239494
239315
239300 | 71.912 | 5.08F+10
5.40E+10
6.67E+10 | | 430.208
430.236
400.263 | 212926
212745
212564 | 465.603
480.003
505.003 | 4.14E+11
4.28E+11
4.52E+11 | | 404.261 | 186441
185133
185957
185780 | 1000-030
1000-030 | 8-41F+11
8-41F+11 | | 392.162 | 265452
265143
264567 | 5.C21
3.655
3.423 | 2.70E+C9
1.93E+C9
1.83E+09 | | 396.240
396.267
396.315 | 23881H
239625
239309 | 43.415
93.415
93.415
82.582 | 7.37F+1C
7.37E+1C
6.33F+1C | | 400.338
400.365 | 212247
212068
211888
211574 | 540.007
540.007
600.003 | 4.86E • 11
4.85E • 11
5.45E • 11 | | 404.364 | 185780
185470
185294
185118 | 1000.000 | 8.41F+11
8.40F+11
8.40F+11 | | 392.245 | 264816 | 3.135 | 2.006.09 | - | 396.369 | 239131
237952
237641 | 72.036 | 5.48E+10
4.68E+10
4.23F+10 | | 430.440 | 211795 | 640.007 | 5-835-11 | - 1 | 404.465 | 185118 | 1000.600 | 8.40F+11 | | 392.340
392.367
392.415 | 264334
264158
263850 | 4.058
6.504
7.521 | 2.17E+C9
2.66E+C9
3.56E+C9 | - 1 | 396.417 | 237641
237463
237286 | 58.519
58.917
63.066 | 4.23F.1C
4.27E.1C
4.67E+1C | | 430.467
430.515
430.543
403.570 | 211215 | 655.G07
750.C07
820.C07 | 5.57E • 11
6.91E • 11 | | 434.569 | | 1000.000 | 8.40F+11
8.40F+11
8.40F+11 | | 372.443
372.470
372.518 | 263672
263494
263182 | 7.521
7.521
7.122 | 4.17E+C9
4.17E+C9
3.53E+C9 | | 396.47]
396.519
375.547 | 236475
236797
236619 | 96.855
117.427 | 0.27F+10
7.61E+10
9.53F+10 | | 403.570
430.618
430.645 | 21C719
210537
21C221 | 550.007
675.003 | 7.61F • 11
8.92E • 11
9.15E • 11 | | 404-671 |
184137
187959
183790 | 1000.000 | 9.40F.11
8.40F.11
8.40F.11 | | 192.546
392.573 | 763303
76282* | 7.122
6.172
5.779
5.375 | 3.53F.C9
3.37E+09
3.14E+C5
2.51F+C5 | | 396.574
376.627
396.649
376.675 | 236619
236310
236135
235960 | 117.627 | 1.125.11 | | 430.672
430.720
430.747 | 210042
209862
209549 | 870.C07
685.000 | 9.116.11
7.556.11
6.186.11 | | 404.719
494.747
404.774 | 183285
183285 | 1000.000 | 9.40F+11 | | 392.671 | 262509
262379
262149
26187) | 5.375
5.523
5.569
6.504 | 2.91F.C9
2.99F.C9
3.25F.C9 | | 334-724 | | 124-078 | 1.07E-11
7.52E-10
6.77E-10
6.37E-10 | | | 209189
209189 | 64C.003
670.003 | 5.73E+11
6.02E+11 | | 404.82?
404.849 | 182775
182595 | | 8.395+11
8.395+11 | | 312.676
342.724
142.752
342.779 | 261873
261627 | 6.504
6.995
7.253 | 3.57E+09
3.67E+C9 | | 396.752
396.779
396.827 | 235502
235326
235017 | 84.624 | 4.50F+1C | | 43C.822
40C.849
433.876 | 208875
208695
208516 | 720.003
770.003
855.003 | 6.30E +11
6.99E+11
8.21E+11 | | 404.876 | 182416
182171
181919
181738 | 1000.000
1000.000 | P. 30F-11
R. 30F-11 | | | 261627
261446
261129
260749 | | 4. CZE+C9
3. 875+09
4. 19E+C9 | - 1 | 396.855
396.882
396.930 | 234941
234004
234354 | 87.643
93.415
106.169 | 6.76E +1C
7.28F +10
8.44E +1C | | 430.876
430.924
430.952
430.979 | 208201
208019
207838 | 1006.303 | 9.24E.11
9.22E.11 | ı | 404.979
405.027
405.055 | 181738
181421
181239 | 1009-000 | 8.39F • 11
8.39F • 11
6.79F • 11 | | 392.655
352.682
392.930 | 260749
260769
260455 | 7-521
7-755
8-217 | 4.19E.C9
4.33E.09
4.61E.09 | | 396.957
396.584
357.032 | 234354
234178
234701 | 100.957 | 8.44E • 1C
8.88F • 1C | | 430.979
431.027
431.055 | 207521
207339
207158 | 895.000
895.000
760.000 | 8-14E-11
8-13E-11
6-79E-11 | | 405.087
405.130
405.156 | 161421
161239
161239
161256
180741 | 515.000
212.000
163.000 | 4.17E+11
1.5AF+11
1.34E+11 | | 392.558
362.585
393.033 | 260276
260097
259786 | 9.185
9.922
11.133 | 5.21E.C9
5.68F.29
6.44E.09 | | 397.059
397.085 | 233692
233514
233337 | 115.365
115.365
117.427 | 9.29E+10
9.29E+10
9.48E+10 | | 401-052
401-130
401-157 | 206842 | 760.007 | 6.776.11 | | 405-185 | 180550
180378
180061 | 132.000 | 9.386+10 | | 393.000 | 259609
259433 | 11.137
11.493
10.967
9.185 | 6.68E+09
6.34E+C5 | | 397.134
317.162 | 233024 | 134.356
148.467
164.CP5 | 1.11E+11
1.25F+11
1.40E+11 | | 431.184 | 706483
206168
205986 | 760.007
820.000
725.000 | 6.75E+11
7.31E+11
6.39E+11 | | 405.261
405.288
405.336 | 179867
179686
179371 | 132.000 | 9.395.10
1.045.11
6.625.10 | | 373.135
373.163
393.190 | 259125
258948
258772 | 8.051 | 5.22F.09
4.53F.09
4.70F.09 | | 397.237
397.264 | 232664
232348
232156 | 154.539 | 1.3CE+11 | | 401-797 | 205489
205309 | 670.000 | 5.65E+11
5.17E+11 | | 405.363
435.390
405.438 | 179193
179015 | 85.000
80.000
78.000 | 5.80F+10
5.43F+10
5.28F+10 | | 397.238
373.266
373.293 | 258463
258312 | 7.521
9.381
13.091 | 4.206+09
4.736+09
5.80E+09 | | 397.291
397.339
397.367 | 231977
231662
231490 | 129-116
100-222
97-715 | 1.05E+11
7.84E+10
7.61F+10 | | 401.362
401.369
401.437 | 205130 | 590.000
630.000
770.000 | 5.44E+II | | 405-466 | 178524 | 78.000 | 5.295.10 | | 393.341
373.368
343.395 | 257828
257653
257678 | 13.223
14.772
16.957 | 7.82E+09
8.65F+09 | | 397.442 | 231299 | 49.434
119.393
145.518 | 7.76F • 10
9.60F • 10 | | 401.465
401.497 | 204452
204452 | 1000.000 | 8.93E+11 | | 405.569
405.569 | 178033
177855
177677 | 61.000 | 4.55F+10
4.19E+10 | | 373.443 | 257169 | 15.605 | 1.03E+10
5.41E+09
8.39E+09 | | 397.496 | 230524 | 210.407 | 1.49f •11
1. P6f • 11 | - 1 | 401.547 | 203956 | 1000.000 | 8.69E+11
8.88E+11 | | | 177367 | 57.00C | 2.28F+1C
2.65E+1C | | 393.458
393.546
393.574 | 256812
256499
256320 | 12.867 | 7.59E+09
6.26E+09 | | 3+7.572
397.599
397.647 | 230127
229945
279629 | 225.874 | 2.05F+11
2.01F+11
1.59E+11 | | 401.667
401.669
401.696
401.744 | 203281
203281
203104 | 1660.603
990.003
975.003 | 8.85F+11
8.74E+11
8.58F+11 | | 405.672
435.699
465.747
405.775 | 177014
176796
176530 | 44.000
44.000 | 2.86E+10
3.14F+10 | | 393.601
373.649 | 256141
255826 | 10.251 | 5.91F+C9
8.37F+09 | - 1 | 397.675
397.702
397.750 | 229447
229266
228936 | 145.518 | 1.42E+11
1.20E+11
1.10E+11 | | 401.744
431.772
431.799 | 202788
202595
202414 | 970.003
975.003
1000.003 | 7.85E+11
8.52E+11
8.74E+11 | | | 176355
175750
175777 | 57.000
65.600
64.000
63.000 | 2.42F+10
4.35F+10
4.28F+10 | | 173.754 | 255465 | 13.909 | 9.436.09 | | 397,778 | 228755 | 149.629 | 1.176.11 | | 431.847 | 202098 | 1000.000 | 8.72F+11
8.71F+11 | | 405.840
405.877
405.904
405.452 | 175704
175402
175229 | 65.000 | 4.216+1C | | 393.779
393.806 | 254945
254765 | 15.605 | 9.43E-C9
9.15E-09 | L | 397.653 | 228267
228082 | 177.633 | 1.515+11
1.586+11 | l | 401.902
431.550 | 201736
201426 | 1000.000 | 8.67E+11 | L | 405.980 | 175229 | 45.000 | **016+1C | | ELAPSED
TIPE,
SECCNOS | ALTITUDE,
FEET # | CURRENT, | ELECTROM
DEMSITY,
ELECTROMS
PER CUBJC
CENTIMETER | ELAPSE
TIPE,
SECONDS | ALTITUDE
FEET
(a) | , CURRENT,
HICRDAMPS | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | | ELAPSED
TIME,
SECCNOS | ALTITUDE
FEET
(a) | CURRENT, | ELECTRON
DENSITY,
ELECTRONS
PER CUBIC
CENTIMETER | ELAPSED
TIME,
SECONOS | ALTITUDE,
FEET
(m) | CURRENT. | ELECTRON DENSITY. ELECTRONS PER CUPIC CENTINETER | |--|--|--------------------------------------|--|--|--|--|--|---|--|--|--|--|--|--|----------------------------------|--| | 389.749 | 281191
281042 | •103
•103 | 5.18E+C7
5.18E+07 | 393.65
393.68
393.91 | 254430
254250 | 19.677 | 1.17E+10
1.17E+10 | | 397.911
397.959
397.986 | 227881
227569 | 207.116
200.555 | 1.63E-11
1.57E-11
1.54E-11 | 401.581
402.008
402.055 | 201226
201049 | 1000.000
1000.000
1000.000 | 8.20E+11
8.20E+11 | | 389.804
389.852
389.879 | 280868
280560
280383 | .100
.180 | 5.186+07
9.326+67
7.776+07 | 393.91
393.96
393.98 | 254070
253756
253578 | 19.964
22.298
22.298 | 1.19E+10
1.34E+10
1.34E+10
1.33E+10 | | 378.014
378.061 | 227569
227391
227212
226902 | 197-286
210-407
219-222 | | 402.083 | 201049
200741
200564
200389 | 1000.000 | 8.20E+11
8.18E+11
8.18E+11
8.17E+11 | | 389.907
389.955
389.982 | 280204 | 133 | 6.73E+C7
6.73E+O7
6.21E+O7 | 394.06
394.06 | | 22.060
20.790
20.245 | 1.33E+10
1.24E+10
1.21E+10 | | 395.089 | 2269C2
226726
226550 | 219.222
243.377
254.478 | 1.73E+11
1.95E+11
2.05E+11 | 402-158 | 202081
199904 | 1000.000 | P.16E+11 | | | 279895
279717
279538 | .123 | | | | | 1.21E.10
1.09E.10 | | 398.163
398.191
378.218 | 226243
276066
225894 | 256.029
254.478
250.727 | 2.16E+11
2.05E+11
2.01E+11 | 402.213
402.260
402.288 | 199728
199446
199272 | 1000.000
1000.000
1000.000 | 8.15E+11
8.15E+11
8.14E+11 | | 390.057
190.085
390.112 | 279226
279049
276671 | 133
123
143 | 6.73E+C7
6.21E+07
7.25E+07 | 394.166
394.19
394.22 | 252429
252253
252076 | 17.200
17.956
18.217 | 1.09E+10
1.01E+10
1.06E+10
1.07E+10 | | 398.266
398.293
398.321 | | 203.831
230.555
157.286 | 1 405411 | | | 1000.000 | 6.14E.11 | | 390.159
390.187
370.214 | 278559
278380
278201
277873 | .243
.363
.513 | 1.24E+C8
1.86E+O8
2.63E+C8 | 394.296
394.296
394.32
394.37 | | 23.406
26.005
33.072 | 1.42E+10
1.72E+10
7.07E+10 | | 378.321
375.368 | 225437
225260
224952
224774 | | 1.56E+11
1.53E+11
1.56E+11 | 402.363
402.390
402.418
402.465 | | 1000.000
1000.000 | 8.13E+11
8.12E+11
8.11E+11 | | 390.262
390.289
390.317 | 277873
277692 | .331
.348
.371 | | 394.37 | 251138
250960
250783 | | | | 378.321
376.366
396.396
398.423
398.471
398.498
398.526
398.573 | 224776
224601
224291
224113
223934
223622 | 222.523
250.727
312.143 | 2.00E+11
2.56E+11 | 402.465
432.493
402.520 | 197948 | 1000-030 | 8.11E+11
8.11E+11
8.11E+11 | | | 277692
277511
277195 | | 1.80E+C8
1.92E+C8
1.73E+C8 | 394, 391
394, 421
394, 471 | 250783
250471 | 33.648
29.069
22.530 | 2.11E.10
1.80E.10
1.36E.10 | | 398.498 | 224113
223934
223622 | 329.337
342.305 |
2.72f+11
2.84f+11
2.59f+11
2.32f+11 | 402.567
432.595
402.622 | 197461
197283
197105 | 1000.000 | 8.10E+11
8.10E+11
8.09E+11 | | 370.392
390.419
390.467 | 277015
276836
276520 | .335
.371 | 1.73E+C8
1.92E+C8
2.C2E+C8 | 394.50
394.52
394.57 | 250293
250114
249802 | 19.964
18.751
20.520 | 1.11F+10
1.23E+10
1.37F+10 | | 398.628
398.628 | 223266 | 316.429
286.547
266.029 | 2.13E+11 | 402.670 | 196792
196611
196430 | 1000.000 | 8.0FE+11
9.08E+11
8.0FE+11 | | 390.494
390.522
390.570
390.598 | 276339
276159
275837 | .456
.504 | 2.35E.C8
2.60E.C8
2.19E.C8 | 394.60 | 249624 | 22.757
25.377
32.785 | 1.37F • 10
1.55E • 10
2.05E • 10
2.32F • 10 | | 398.675 | 222954 | 262.129
269.979
273.679 | 2.09E+11
2.16E+11
2.20E+11 | 402.772
402.772
402.800 | | | 8.07E+11
8.07E+11 | | 390.598
390.674
390.700 | | .506
.673 | 2.62E+C8
3.48E+G8
4.C9F+C8 | 394.70
394.73
394.78 | | 36.560
36.855
34.806 | | | 398.703
398.730
398.777
398.805 | 222596
222257
222078 | 273.979
299.313
312.140 | 2.42E+11
2.54E+11 | 402-821 | 195732 | 1000.000 | 8.066+11
8.066+11 | | | 275149
274978
274808 | | | 394.80 | | | 2.19E+10
2.03E+10
1.91E+10 | | 398.880 | 221899
221585
221406 | 307.658
296.547
278.673 | 2.50E+11
2.30E+11
2.22E+11 | 402.902
402.930
402.578 | 195238
195059
194746 | 1000.000
1000.000 | 8.05F+11
8.05E+11
8.05F+11 | | 390.773
390.800
390.828 | 274489
274308
274127 | .913
.873
.853 | 4.70F+C8
4.49E+C8
4.39E+08 | 394.834
394.88
394.91 | 247770 | 30.756
30.756
32.213 | 1.91F+10
2.01F+10
2.11F+10 | | 398.935
358.982
399.010 | 221226
220914
220738 | 286.547
333.653
342.305 | 2.33£.11
2.72E.11 | 403.033 | 194367 | 1000-000 | 8.04F+11
8.04F+11
8.04F+11 | | 390.875
390.903
390.930 | 273813
273635
273457 | .743 | 3.826+C8
3.316+C8
3.416+G8 | 394.93
394.98
395.01 | 247411
247095 | 33.648
34.806
35.681 | 2.11F+10
2.19F+10
2.25E+10
2.15F+10 | | 399.010
399.037
399.085 | 220738
220561
220252
220074 | 342.305
372.801
424.43d
434.527 | 2.806+11 | 403.104 | 194079 | 1000-000 | | | 390.977
391.005 | 273457
273147
272970
272794 | .660
.763
1.023 | | 395.04
395.04 | | 34.226 | 2.25E+10
2.15F+10
2.07E+10 | | | | | 3.56F+11
3.65E+11
3.695+11 | 403.135
403.183
403.210 | 193727
193420
193243 | 1000.030 | 8.C3F+11
8.C3F+11 | | 391-032 | | 1.263 | 5. 26E+CB
6.50E+CB
8.79E+CB | 395.11 | 245237 | 32.213 | 2.01f+10 | | 399.140
399.187
399.215 | 219589
219414
215240 | 364.054
333.653
32C.725 | 2.99E+11
2.71E+11
2.59E+11 | 403.285
403.285 | 193067 | 1000.000 | 8.03E.11
8.03E.11
8.03E.11 | | 391.107
191.135
391.182 | 272306
272129
271821 | 2.133
2.453
2.133 | 1.09E+09
1.25E+09 | 395.19
395.21
395.24 | | 40.453
46.514
53.607 | 2.60F-10
3.05F-10
3.59E-10 | | 399.242
399.290
319.317 | 218959
218782 | 303.582 | 2.43E+11
2.66E+11 | 473.340 | 192416
192128
191951 | 1000.000 | 8.03° · 11
8.03° · 11 | | 391.210 | 271646
271472
271187 | 1.713 | B. 79F • CR
6. 96E • CR
7. 47E • CB | 395.29
395.32
391.34 | 3 245064 | 64.804 | 4.46E+10 | | 199.345
199.192 | 71 PACA | | 2.78F+11
3.39E+11
3.80E+11 | 403.415 | | | P. 076 +11
P. 02f +11 | | 391.285
191.313
391.342 | 271187
271306
270824 | 1.453
1.393
1.603
1.775 | 7.47E.CB
7.16E.CB
8.23F.CE | 395.34
395.42
395.45 | 2447C5
244389
3 2442C8
1 244026 | 59.320
44.420
39.528
36.267 | 4.03F+10
2.85E+10 | | 399.345
399.470
399.477
399.404
399.522
345.549
399.527
399.624 | 218297
218121
217945
217616 | 439.608
455.191
476.503
465.766 | 4.COE+11 | 403.491 | | 1000.000 | 8.02E+11 | | 391.418
391.446 | 270509
270321
270153 | 1.775
2.081 | 9-12E-C9 | 195.45
395.49
395.52 | 244026
243711
243531 | | 2.53E+10
2.30F+10
2.27E+10
2.47E+10 | | 399.522 | 217636
217460
217282
216970 | 465.766
460.458
504.654
481.632 | 3.64(-11
4.246-11
4.036+11 | 473.594
403.621 | 190770
190610 | 1000.000 | 8.02E • 11
8.02E • 11
8.02E • 11
8.02E • 11 | | 191.494 | | 2.081
2.175
2.491
2.452 | 1.12F+09
1.2BF+09 | 395.55
395.55 | 243352 | 38.632
43.739
59.725 | 7.84F+1C | | 379.624 | 216790
216610
216296 | 451.932
564.054
458.463 | 4.03E-11
4.23E-11
4.17E-11 | 403.656 | 190116 | 1000.000 | 8.02F+11
8.02F+11 | | 391.549 | 269663
269484
269172 | 7.613 | 1.26E+C9
1.54E+C9
1.37E+09
1.54E+09 | 395.62 | 242855 | 70.928
79.934 | 4.94F+10
5.67F+10 | | 399.699
397.727
399.754 | 216296
216117
215925 | 458.463 | 4.17E.11
4.17E.11
3.96E.11 | 403.751 | 189732 | 1000.000 | #.C?[+11
#.C?[+11
#.O2F+11 | | 391.624
391.651
391.699
391.726 | 268994
268815
268501 | 3.013
3.236
3.354 | 1.54E+09
1.65E+09
1.71E+09 | 195.70
395.73
395.75 | 3 242358
1 242178
9 241999 | 79.934
73.464
65.689
55.141 | 5.67E+10
5.14E+10
4.57F+10
3.70E+10 | | 399.802
395.879 | | 498.461
476.503
444.778 | 3-666+11 | 403.824 | | 1000.000 | 8.025.11
8.025.11 | | 391.726
391.754
371.802 | 268320
768114
267797 | | | 395.80 | 241502 | 55.141
51.721 | 3.70F+10
3.44F+10 | | 399.802
395.829
399.857
399.904 | 215428
215247
214931 | 434.527
424.419
490.003 | 3.47E.11
4.07E.11 | 403.90;
403.95; | 188383 | 1003.033 | 8.07E+11
8.02F+11 | | | 267797
267617
267637 | 3.536
3.616
3.423 | 1.81F+09
1.85F+09
1.75F+09 | 395. 56 | | 51.721
53.227
58.519 | 3.44E+10
3.55E+10
3.96E+10 | | 399.959 | 214751
214572
214256
214075 | 540.003
580.003
725.003 | 4.528 +11
4.898 +11
c.236 +11 | 404.00° | 187592 | 1000.000 | R.C2E + 11
R.O2E + 11
R.O2E + 11 | | 391.857
391.905
391.932 | 267122
266942 | 2.384
3.236
3.293 | 1.73F+C5
1.65F+09
1.68E+09 | 395.93
395.56
396.01 | 240330 | 64.365
66.586
70.451 | 4.41E+10
4.59E+10
4.89E+10 | | 400.034 | 214075 | 770.000 | | 404.10 | | 1000.000 | 8.02F+11 | | 391.960
192.008
192.035 | 266763
266451
266272 | 7.511
4.895
5.689 | 1.97F+09
2.54E+09
2.58F+09 | 396.03
396.06
396.11 | | 71.912
70.451
73.464 | 5.01E-10
4.89f+10
5.13E-10 | | 400.109
470.137
433.164 | 213894
213579
213398 | 770.000
670.000
570.000 | 6.64E+11
5.70E+11
4.77E+11 | 404.16 | | 1300.030 | #.C2F+11
#.D2F+11 | | 372.363 | | 6.995
7.386
6.87) | | 396.14
396.16 | 1 239472 | 81.236
87.643
99.434 | 5.75F.1C
6.27E.10
7.24F.10 | | 430-212 | 213219
212903
212722 | 540.000
455.000
510.000 | 4.07F+11 | 404.71 | 186417 | 1000.000 | R.C2f+11
R.D2E+11 | | 392.138 | 265784
26560c
265430 | | 3. 95F - C9
3. 65E - C9
3. 1 - E - C9
2. 55E - C9 | 396.21 | | | | | 400.314
400.342 | 212541
212225
212045 | 527.500
570.000
585.000 | 4.761-11
4.741-11
4.876-11 | 404.36 | 185914
185758
185449 | 1000.030
1000.000
1000.000 | P.07(+1)
P.07(+1)
A.02(+1) | | 372.214
392.241
372.269 | 265121
264745
264794 | 4.896 | 2.39E+09
2.42E+09 | 396.27
296.31
396.34 | | 101.426
93.415
85.407 | 7.4CE+10
6.77F+10
6.07F+10 | | 400.342
410.369
430.416
400.444
430.471
430.519
430.546
470.574
400.621
400.649 | 211552
211372 | 640.003
640.003 | 5.37E+11
5.36F+11
4.99E+11 | | | 1900.000 | 8.025+11 | | 392.316
392.344
392.371 | 264497
264312
264136
26382P | 5.523 | 2.48f + 09
2.9CF+09
3.45F+09 | 396.31
346.42
356.44
396.47 | 237930 | 76.845
68.647
69.683
75.677 | 5.38F *1C | | 430.471 | 211372 | | | 404.470
404.511
404.541 | 185046 | 1000.000 | #.02F+11 | | | 26382P
263650 | 6.50+
8.217
9.566 | 5.24F.C9
5.55E.C9 | 396.47 | 8 237441
5 237264
3 236953
236755 | 75.677 | 4.76E • 10
4.2ME • 10
7.07E • 10 | | 430.546 | 211193
21C077
21C096
210515 | 670.000
725.000
820.000 | 5.62E • 11
6.12E • 11
6.99E • 11 | 404.62 | 183914 | 1000.000 | A.02E-11
A.02E-11
A.02E-11 | | 312.446
347.474
342.522 | 263650
263472
263160 | 10.091 | | 396.52
396.5°
396.57 | 236715
9 236597
5 236298 | 07.715
117.427
139.797 | 7.07E • 10
8.72E • 10
1.07E • 11 | | 400.621 | 210199
210019
209840 | 820.003
820.000
750.003 | 6.99E+11
6.57E+11
6.32E+11 | 404.72 | 183443 | 1300.000 | #.02E -11
#.07F -11
#.02F -11 | | 392.549
392.577
312.625 | 262981
262801
262487 | 7.521
7.122
6.504 | 4. C4F+09
3.81F+C9
3.46F+09 | 396.62
396.65
396.68 | | 160.845
151.473
137.052 | 1.257.11
1.176.11
1.046.11
7.536.10 | | 400.723
400.751
400.778 | 209346
209346
209167 | 5 TO: CO2 | 4.68E-11
4.40E-11
4.16E-11 | 404.75° | 1 1/1/06/ | 1000.000 | P.02E-11
P.02E-11
R.02F-11 | | 192.652
392.690
392.728 | 2623C7
262127 | 7.253 | 3.67E+C9
3.89E+C9
4.45E+C9 | 396.77
396.75
396.78 | 8 715611
5 235480
3 235304 | 103.518
97.715
95.995 | 7.53E+10
7.05E+10
6.90E+10 | | 400.778
400.825
473.853
400.880 | | 540.003
515.003
527.503 | | 404.85
404.88 | | 1000.000 | | | 392.778
392.755
392.783
392.831 | 261604
261423
261107 | 8.217
8.98+
9.185
9.377 | 4.91E+C9
5.03E+09 | 396.83 | 1 234995
8 234919 | 95.995
95.135
99.434
110.957 | 6-83F-10 | | 400.880 | 208493
208178 | 585.000
700.000
975.000 |
4.796+11
5.82E+11
8.33E+11 | 404.92
404.95
404.96 | 182078
181897
181715 | 1000.000
1000.000 | 8.02F • 11
8.02F • 11
P.02F • 11 | | | | 9.377
9.377
9.379 | 5.15E+09 | | | | 8.13E.10
9.03E.10
1.04F.11 | | 400.928
400.955
400.955
400.963
401.031
401.058
401.066 | 207997
207815
207498 | 1000.000 | 8.55E+11
8.54E+11
8.52E+11 | 405.03
405.05 | 1 181398 | 1000.000
1000.000 | #.02F+11
#.02F+11
#.02F+11 | | 392.924
392.921 | 260747
260432
260253 | 10.485 | 5.15E+C9
5.82E+C9
6.32E+C9 | 396.93
376.56
396.98
397.03 | | 137.052
134.356
131.710 | 1.016.11 | i | 431.058
431.086 | 207117 | 1000.000 | 8.51E+11
8.51E+11 | 405.13 | 180718 | 1000.000 | 0.07E+11
8.07E+11
8.02F+11 | | 392.989
393.036
393.064 | 260253
260075
259764
259587 | 12.685
13.909 | 7.176+05
7.93E+09
7.53E+09 | 397.0e
397.09 | 233492
0 233315
9 233002 | 134.356
145.518
157.662 | 1.016.11
1.116.11 | | 431.133
401.161
401.188
401.236 | 206820
206640
206461
206145 | 1000.003
1000.003 | 8.49E.11
8.48E.11
8.47E.11 | 405.18
405.23
405.26 | 7 180019 | 1000.000 | 8.02F • I I
8.02F • I I
8.02F • I I | | 393.064
393.091
393.139
333.166 | 259587
259411
255103
258926 | 13.395
13.395
10.638
10.691 | 7.436.09
7.616.09
5.926.09
5.596.09 | 397.13
397.16
397.19
397.24 | 9 233002
5 232822
1 232641
0 232326 | 177-633 | 1.21E+11
1.39F+11
1.51F+11
1.36E+11 | | 401.236 | | 1000.003 | 8.46[-11 | 405.27 | 2 179664 | 1000-000 | | | | | | | | | 174.159
157.662
148.467 | | | 431.263
431.291
431.338 | 205782
205467
205287 | 1000.003 | 8.44E+11
8.43E+11
8.42E+11 | 405.36
405.39
405.44 | 178993
2 178680 | 975.000
975.000 | 8-02F+11
7-81E+11
7-60F+11 | | 393.242
373.269
373.257 | 258441
258290
256114 | 9.185
10.253
11.683 | 5.C5E.D9
5.69E.09
6.56E.09 | 397.29
397.34
397.37 | | 121-615 | 8.985.10
8.976.10 | | 401.193 | 205108 | 1000.000 | 8.41E+11
8.39E+11 | 405.46
405.45
405.54 | 178501 | 922.500 | 7.37E+11
7.13E+11
6.50E+11 | | 393,344
393,372
393,399 | 2578C7
257631 | 19.385 | 9.43f.09
1.15E-10 | 347, 39 | 0 231774 | 119.393
139.797
174.159 | 8.78E+10
1.05E+11 | | 431.338
401.306
401.793
401.446
401.468
401.496
401.543
401.571 | 204611
204429
204114
203934 | 1000.003
1000.003
1000.003 | 8.37E+11
8.37E+11
8.36E+11
8.35E+11 | 405.54
405.57
405.60 | 5 178010
2 177833
3 177655
8 177345 | 750.000
750.000 | | | 393.447
393.414
393.502 | 257456
257147
256968
256790
256477
256298
256118 | 27.294
20.523
17.703
14.772 | 1.34E+10
1.22E+10
1.04E+10 | 397.44
397.47
397.50
397.54
397.57 | 3 230761
0 230601
8 230286 | 174.159
197.286
222.523
239.776 | 1.35E+11
1.56E+11
1.79E+11
1.95E+11 | | 401.571 | 203934 | 1000.003 | | 405.64 | 177345 | 570.000 | 5.49E+11
4.41E+11
3.47E+11 | | 1 393,550 | 256790
254477 | 14.772
12.867
12.501
12.501 | 1.04E+10
8.50F+09
7.31E+09 | | | 232.725 | | | 401.598
431.645
431.673
431.700 | 203755
203440
203261
203081 | 1000.003 | 8.32E+11
8.31E+11
8.30E+11 | 405.74
405.77 | 176992
1 176684
8 176508 | 465.000
515.630
515.000 | 3.55F+11
3.96F+11 | | 373.577
393.605
343.653 | | 13.909 | 7.09E+09
7.09E+09
7.97E+09 | 397.65
337.67
397.70 | H 229425 | 200.555
181.059
164.085 | 1.58E+11
1.41E+11
1.26F+11 | | 431.748 | 202766
202572
202391 | 1000.000 | 8.29E+11
8.26E+11
8.26E+11 | 405.80
405.85
405.88 | 176333
176024
1 175955 | 495.000
495.000
465.000 | 7.80F+11
7.80F+11 | | 393.680
393.768
373.755 | 255623
255442
255102 | 15.605
16.484
15.396 | 9.04E+09
9.60F+09
1.15E+10 | 397.75
397.78
397.80 | 228914 | 170.742
167.385
174.159 | 1.31f + 11
1.28f + 11
1.34f + 11 | | 401.803
401.851
401.878 | 202391
202076
201896
201716 | 1600.000
1000.000 | 8.24E+11
8.24E+11 | 405.88
435.90
405.55
405.96 | 1 175455
8 175683
6 175380 | 465.009
455.000
395.000 | 3.55E+11
3.47f+11
2.98E+11 | | 373.783 | 254923
254744 | 19.964 | 1.19E+10
1.19E+10
1.20E+10 | 397.85
397.85 | 6 228238 | 194.025 | 1.52E+11
1.57E+11 | | 471.906 | 201716 | 1000.003 | 8.22E • 11
8.21E • 11 | 405.96 | 175207 | 395.000 | 2.985 • 11 | | | 0.3048 feet | | | | | | | • | | | | | | | | • | | - 1 | LAPSED
TIME,
ECCNOS | ALTITUDE
FEET
(%) | , CURRENT, | ELECTRON DEMSITY, ELECTRONS PER CUBIC GENTIMETE | 1 1 | ELAPSED
TIME,
SECONDS | ALTITU
FEET
(a) | DE. GURPENT
MICROAMP | ELECTRON
OFNSITY,
S ELECTRONS
PER CUBIC
CENTIMETE | , | ELAPSE
TIME,
SECOND | FEE | | ELECTRO AT. DEMSITY MPS ELECTRO FER CUE CENTIME | iks | ELAPSED
TIME,
SECONDS | ALTITUD
FEET | E, CURRENT
MICROAMP | PER CUPIC [| |--------------------------------------|--|--|--|--|----------------|--|--|---|--|-----|--|--|--|--|----------|---|--|--|--| | 3 | 89.753
99.780
19.807
89.855
89.882 | 261195
281920
280846
280538
260361 | -150
-180
-140
-180
-200 | 7.63E+07
9.15E+C7
7.12E+07
9.15E+C7
1.02E+C8 | 1 | 393,861
393,688
393,916
393,964
393,991 | | 7 23.406
8 24.124 | 1.37E+10
1.37E+10
1.42E+10 | | 397.914
397.96
197.98
398.01 | 2275 | 7 215.9
8 229.2
0 222.5 | 74 1.66E+1
72 1.58E+1
74 1.69E+1 | 1 1 1 | 401,584
402,011
402,059
402,066
402,113 | 201204
201027
200718
200542
200367 | 1000-030
1000-030
1000-030
1003-030 | 7.56E+11
7.86E+11
7.65E+11 | | 3 | 59.910
99.958
89.985
90.013 | 280184
279872
279694
279516
279204 | .140
.140
.120
.100 | 7.12E+07
7.12E+07
6.10E+07
5.08E+07
7.11E+07 | | 394.019
394.067
394.094
394.121
394.169 | 25337
25306
25289
25271
25240 | 7 25.123
1 23.633
5 22.530 | 1.63E+10
1.6CE+10
1.4EE+10
1.34E+10
1.32E+10 | | 198.092
198.119
198.167 | 22670
22651
22621 | 4 266.C | 05 2.12E.1
47 2.16E.1 | <u> </u> | 402.161
402.169
402.216 | 200058
199862
199705 | 1000.000
1000.000
1000.000
1000.000 | 7.856.11
7.846.11
7.846.11
7.846.11
7.826.11 | | 3 | 70,115
90,115
90,163
90,190
90,217 | 275026
278849
276536
278358
278179 | .173
.213
.413
.503 | 8.63E+C7
1.17E+CP
2.C8E+OB
2.53E+OB
2.79E+C6 | | 394-196
394-224
394-272 | 252239
252054
25177 | 21.314
22.296
29.089 | 1.21f-10
1.24f-10
1.30f-10
1.74f-10
2.25f-10
2.95f-10 | | 398.269
398.296
398.296
398.324
398.372 | | 4 215.9
8 203.6
0 222.4 | 74 1.65E+1
72 1.57E+1
31 1.47E+1 | 1 | 402-291
402-318
402-366
402-394
402-421 | 199250
199075
198767
198590
198412
196103 | 1000.000 | 7.83E+11
7.83E+11
7.83E+11
7.82E+11 | | 35 | 90.245
90.292
90.320
90.368 | 277851
277669
277488
277173
276993 | -446
-374
-391
-394
-374 | 2.26E.D8
1.89E.C8
1.98E.C8 | | 394.326
394.374
394.401
394.429
394.477
394.504 | 251424
251118
250938
250761
250449 | 42.070
34.806
25.690 | 3. 11E + 10
2.61E + 10
2.11F + 10 | | 398. 599
398. 426
398. 474
398. 501
398. 579
398. 577 | 22457 | 9 282.30 | 2.54E+1
2.64E+1
4 2.95E+1 | | 402.421
402.469
402.476
402.523
402.571 | 196103
197926
197749
197439 | 1000.000
1000.000
1000.000
1000.000 | 7.62E+11
7.63E+11
7.61E+11
7.61E+11
7.61E+11 | | 1 39 | 0.422
0.470
0.497
0.525 | 276813
276458
276316
276135
275813 | .379
.543
.493
.567 | 1.89F+CH
1.91E+CH
2.75F+CE
2.49E+CB
2.87E+CR
2.97F+CR | П | 394.580
394.607 | 250092
249780
249602
249424
249110 | 23.406 | 1.39E+10
1.37E+10
1.45E+10
1.63E+10
1.92E+10 | | 398.631 | 22342
22324
22293 | 2 329.33
4 325.02
1 303.54 | 2.76E+1
2.50E+1
2.46E+1 | | 402.625
402.673
402.700
402.728
432.776 | 197063
196769
196589
196408
196408 | 1000.000
1000.000
1000.000
1000.000 | 7-81E+11
7-80E+11
7-80E+21
7-80E+21
7-80E+31 | | 39 | 0.6C2
0.676
0.703 | 275627
275128
274957 | 1.066
1.023 | 2.99E+C8
3.46E+C8
4.90E+CP
5.38E+C8
5.15E+C8 | | 394.682
394.709
394.737
394.785
394.812 | 248929
248749
248420
248241 | 45.110
46.514
42.070 | 2.58E+10
2.82E+10
2.92E+10
2.66E+10
2.39E+10 | | 198.733
398.781
398.808
398.835
398.883 | 22257
22223
22205
22187
22156 | 4 329.33
5
359.69
7 346.64 | 1 2.645.11 | | 402-803
432-830
402-879
432-905 | 195888
195709
195396 | 1000.000
1000.000
1000.000
1000.000
1000.000 | 7.80E+11
7.80E+11
7.80E+11
7.80E+11
7.80E+11
7.80E+11 | | 39 | 0.776
0.893
0.831
0.879
9.906
0.933 | 274466
274285
274104
273791
273612
273435 | •950
•810 | 5.30F+08
4.80F+(8
4.09E+C8 | | 394.887
394.914
394.941
394.989
395.016 | 248051
247747
247568
247389
247072 | 37.445
38.334
34.930
41.417
42.731 | 2-396-10
2-296-10
2-356-10
2-396-10
2-566-10
2-656-10 | | 398.986
399.013 | 22120
22089
22071 | 316.42
325.02
364.05
395.14 | 9 2.386.11
7 2.456.11
4 2.776.11
2 3.046.11 | | 402-533
402-981
403-036
403-036
403-036
403-111 | 195037
194723
194545
194366
194357 | 1007-000
1000-000
1000-000
1000-000 | 7.80E+11
7.79E+11 | | 39 | C.981
1.208
1.035
1.082
1.110 | 273125
272948
272771
272462
272284 | -667
-643
1-153
1-237
2-173
2-693 | 3.336+C8
4.756+C8
5.806+C8
6.216+C8
1.096+09 | | 395.044
395.092
395.119 | 246891
246710
246394
246215
246035 | 43-065
42-400
39-229
39-229
42-070 | 2.67E+10
2.63E+10
2.41E+10
2.41E+10
2.60E+10 | | 399.288
399.115
399.143
399.191
399.218 | 220224
22065
21487
21456
21456 | 564-05
679-81
638-79
476-50 | 4.47E+11
5.50E+11
3.5.13E+11 | | 403.138
403.186
403.213
403.241
403.289 | 1937C6
193399
193221
193045
192764 | 1000.000
1000.000
1000.000
1000.000 | 7.791.11
7.792.11
7.792.11
7.792.11
7.792.11
7.792.11 | | 39 | 1.186 | 272107
271799
271625 | 2.683
2.367
1.843
1.713
1.463 | 1.34E.05
1.18E.C5
9.24E.08
8.60E.CH
7.35E.CP | 3 | 395, 194
395, 271
395, 249
395, 297
395, 324 | 245719
245538
245357
245041
244962
244682 | 50.236
58.121
69.985
83.973
82.582 | 3.17E+10
3.74E+10
4.61E+10
5.66E+10
5.55E+10 | | 399.245
349.293
399.320
399.348
195.356
399.473 | 219218
218937
218760
218584
218275
218099 | 365.97 | 3.14E+11
1 3.52E+11 | | 403.316
403.343
403.391
403.418 | 192589
192414
192106 | 1003.000
1000.000
1000.000
1000.000 | 7.80E • 11
7.80E • 11
7.80E • 11
7.80E • 11
7.80E • 11 | | | 1.289
1.317
1.345
1.394
1.421 | 271164
27C983
27C8C1
27C487
27C309 | 1.603
1.793
1.876 | 8.94E+C8
5.42E+C8 | 3 | 195.351
395.399
395.426
395.454
395.592
395.129 | 244682
244366
244185
244004
243688
243509 | 70.928
53.989
46.870
43.401
42.731 | 4.68E+10
7.44E+10
2.93E+10
2.69E+10
2.65E+10 | | 399.498
399.525 | 217923 | 758.69 | 7.21E-11
6.40E-11
5.98E-11 | | 403.494
403.521
403.549
403.597 | 190767 | 1000-000 | 7.80F+11
7.80F+11
7.80F+11 | | 391 | .457
1.524
.552
.600
.627 | 27C131
269819
269641
269662
269149
266971 | 2.852
3.643
3.354
3.273
3.321
3.354 | 1.42E+09
1.52E+09
1.67E+09
1.63E+09
1.66E+09
1.67E+09 | 3 | 95.604
195.631 | 243329
243013
242832 | 47.228
53.989
75.677
93.415
100.222
95.995 | 2.966+1C
3.446+10
5.026+1C
6.366+10
6.886+10 | | 199.600
319.627
199.655
199.703 | 217260
216949
216768
216588
216274
216094 | 646.80
679.81
705.598 | 5.43E+11
5.43E+11
5.65E+11 | | 403-652
403-700
433-727
433-754
403-802
403-879 | 189914
189710 | 1000.000
1923.000
1003.000
1003.000
1000.000 | 7.79F.11
7.79F.11
7.79F.11
7.79F.11
7.79F.11
7.79F.11 | | 391
391
391 | .654
.702
.729
.757
.805 | 268793
268479
268298
268092
267775
267594 | 3.384
3.388 | 1.69E+09
1.69E+09
1.87E+09
1.54E+C9
2.11E+C9 | 31 | 195.767
175.774
195.761
195.809
95.876 | 242335
242156
241976
241660
241479
241298 | 87.643
76.673
67.493 | 6.55F+10
5-91E+10
5-24E+10
4-41E+10
4-31E+10 | | 399.757
199.205
399.232
399.860
339.908
399.935 | 215902
215587
215406
215224
214909
214729 | 630.881
515.356
487.402
481.532
560.000
745.003 | | | 403.857
403.905
403.932 | 189719 | 1000.000
1000.000
1000.000
1000.000 | 7.795.11
7.795.11
7.795.11
7.795.11
7.795.11
7.795.11
7.795.11 | | 391
391
391 | .260
.908
.935 | 267414
267099
266920
266741 | 3-886
3-585
3-497
3-886 | 1.94E+CG
2.COE+CG
1.75E+CG
1.95E+OG
2.29E+OG
2.95E+CG | 31 | 95.412
95.439
95.465
96.014
46.041 | 240982
240803
240623
240307
240129 | 66-136
71-912
78-673
81-903
86-141 | 4-31E+10
4-73E+10
5-23E+10
5-47E+10
5-78E+10
5-78E+10 | | 400.010
400.038 | 214549
214234
214052 | 1000.003 | 8.20E+11
8.19E+11
8.19E+11 | | 403.560
404.008
424.035
404.063
404.111
404.138 | 187970
187692
187392 | 1000.000
1000.000
1000.000 | 7.79E+11
7.79F+11 | | 392
392
392 | .011
.038
.066
.114 | 266428
266250
266072
265761
265584 | 8.721
8.584
7.905 | 1.68E.09
4.58E.09
4.13E.09 | 39
39
39 | 96.069
96.117
96.144
96.171 | 239450
239450
239450 | 85.407
89.188
97.715
97.905
124.078 | 5.72F+10
6.00F+10
6.65E+10
6.81E+10
F.69E+10 | - 1 | 430.113
430.140
430.167
430.215
430.243
430.270 | 213556
213376
213196
212881
212699
212518 | 1000.003
1000.003
1000.003
1000.003 | | | 404.213 | 186724 | 1000.000
1000.000
1000.000
1000.000
1000.000 | 7.79F.11
7.79F.11
7.79F.11
7.79F.11
7.79F.11
7.79F.11 | | 372 | . [69
. 217
. 244 | 265099
265099
264923
264772
264665 | 5-155 | 3.556.00
2.556.09
2.556.09
2.556.09
2.626.09
2.706.09 | 39
39 | 76.246
96.274
96.322
96.349 | 236954
236773
236579
236265
236266
237908 | 131.710 | 9.516.10
9.29F.10
6.916.10 | | 436.318
430.345
436.372
406.420
430.447
430.474 | 212203
212023
211843
211529 | 1000.003
1000.003
1000.003
1000.003 | 8.13E+11
8.13E+11
8.13E+11
6.13E+11
6.12E+11 | | 404.419 | 185426 1
185426 1 | 000.000
000.000
000.000
000.000 | 7. T9E+11
7. 79F+11
7. 79F+11
7. 79F+11
7. 79F+11 | | | 320
347
274
422
449
477 | 264290
264115
263806
263628
263450 | 7.521
10.633
11.493 | 3.68E+09
6.17E+09 | 39 | 96.424
96.451
96.478 | 237596
237419
237242
236931
236753
236775 | 91.696
72.934
#1.903
89.578
115.365
139.797 | 6.17F-10
5.29E-10
5.436-10
6.03E-10
7.96E-10
9.89F-10 | | 430.522
430.549
400.577 | 211350
211170
210855
210673
216492 | 1000.000
1000.000
1000.000
1000.000 | 8-126-11
8-176-11
8-176-11
8-176-11
8-176-11
8-176-11 | !! | 404.576
404.624 | 184584 1
184405 1
184092 1
183914 1 | 000.000 | 7.80F+11
7.80F+11 | | 312. | 552 | 263137
262958
262779
262465
262284
262104 | 8.217
7.905
8.058 | 5. 78E+09
4. 50E+09
4. 32E+C9
4. 15E+C9
4. 24E+C9 | 39 | 6.679
6.676
6.673 | 236266
236291
235916 | 184.289 | 1.276.11
1.356.11
1.356.11
1.356.11
1.166.11
8.626.10
7.956.10 | | 400.625
400.652
400.679
400.757
430.754
430.781 | 210176
239967
209817
209503
209324
209144 | 1000.003
1000.003
1000.003
1000.003 | 8.07E-11
8.07E-11 | | 404.726
404.753 | 183421 1
183227 1
183245 2
182730 1 | 000.000
000.000
000.000
000.000
000.000 | 7.805-11
7.805-11
7.805-11
7.805-11
7.815-21
7.915-11 | | 392. | 731
758
786 | 261788
261581
261400 | 9.922
10.407
10.631 | 5.31E.09
5.61E.09
5.75E.09
5.85E.09 | 39
39 | 6. 834
6. 861 | 235458
235282
234973
234796
234619 | 108.610 | 7.42E+10
7.42E+10
7.94E+10 | | 430.829
430.856
430.883
430.931
430.958 | 208830
208850
208471
208155
207974 | 1000.003
1000.003
1000.003
1000.003 | 8.06E+11
8.05E+11
8.05E+11
8.05E+11
8.04E+11 | | 404.521
404.958
404.58A | 182371 1
182055 1
181874 1 | 000-000 | 7.815.11
7.815.11
7.815.11
7.815.11
7.815.11 | | 392.
392.
392.
392.
392. | 937
564
992 | 260904
260724
260410
260231
260052 | 10.795 5
11.693 6
13.046 7 | 5.86F+C9
6.39E+D9
7.21E+09
9.23E+C9 | 39 | 6.964
6.961
7.039
7.066
7.093 | 234310
234134
233957
233647
233470
233292 | 151.473
148.467
154.539 | 1.01E+11
1.05E+11
1.10E+11
1.15F+11 | | 431.034
431.061
431.789 | 207475
207475
207294
207113
206797
206618 | 1000.003
1000.003
1000.003
1000.003
1000.003 | 8.03E+11
8.02E+11
8.02E+11
8.01E+11
8.01E+11 | | 405.061
405.069
405.137
405.164 | 81013 1
80696 1
80514 1 | 000.000 | 7.82F.11
7.82F.11
7.82F.11 | | 393.
393.
393.
343. | 169 | 256964 | 10.963 6 | 0.03E • 09
0.52E • 09
0.02E • 09
0.00E • 09 | 39 | 7.141
7.168
7.196 | 232979
232799
232619
232603
232111 | 200.555
203.621
203.631 | 1.15E+11
1.34E+11
1.48E+11
1.50E+11
1.50E+11 | 1 | 71.164
21.191
31.239
31.266
21.294 | 206438
206122
205941
205760 | 1000.007 | 8.005+11
8.005+11
7.995+11
7.995+11 | | | 79641 10
79327 10
79148 11 | 000.000
000.000 | 7. *2F-1]
7. *2F-1]
7. *2F-11
7. *2F-11
7. *2F-11
7. *2F-11 | | 393.
393.
393. | 245
272
300
348 | 258419
258268
258092 | 12.078 6
13.741
7
20.520 1 | .652E+09
.66E+09
.66E+09
.18E+10
.46E+10
.70E+10 | 397 | 7.299
7.346
7.373
7.401 | 231932
231616
231435 | 170.742
139.797
134.356 | 1.23F+11
1.23F+11
1.78E+10
1.35E+10
1.77E+10 | | 71.369
31.396
31.444
71.471 | 205444
205265
205085
204769
204588
204407 | 1000.003
1000.003
1600.003
1000.003 | 7,986+11
7,986+11
7,986+11
7,976+11
7,966+11 | | 405.397 1
405.445 1
405.472 1 | 78479 10
78479 10
78100 10
77988 10 | 00.000 | 7.#3F+);
7.83C+11
7.#3F+11
7.43C+11
7.43C+11 | | 393.
393.
393.
393. | 490
477
505 | 254746
254746 | 25-123 1:
22-663 1: | .70E+10
.48E+10
.73E+10
.04E+10
.19E+09 | | 7.551
7.579
7.605 | 130263
1300P2 | 200.555
217.015
247.027
282.305
278.070 | .47E+11
.60F+11
.85E+11 | 1: | 21.601 | 264091
203912
203732 | 1000.000
1000.000
1000.000
1000.000 | 7-966+11
7-956+11
7-956+11
7-956+11
7-936+11
7-936+11 | | 405.651 1
405.651 1
405.678 1 | 77433 10
77323 12
77146 10 | 00.000
000.000
000.000 | 7.835.11
7.635.11
7.635.11
7.835.11 | | 393.
393.
393.
393.
393. | 608
656
883
711 | 556C1
5542C | 14.772 8.
16.029 9.
17.203 9. | .31E+C9
.68E+C9 | 397
397 | 7.654
7.681
7.709
2.757 | 29583
29402
29221
28891
28710 | 225.874 1
207.115 1
197.286 1
184.289 1
190.772 1 | .67E+11
.51E+11
.43E+11
.33E+11 | 4 | 01.806 | 263059
202731
202550 | 1000.003 | 7.975+11
7.925+11
7.915+11
7.905+11
7.905+11
7.895+11 | | 105.754 I
105.809 I
105.867 I
105.884 I
105.911 I
105.59 I | 76311 10
76311 10
76006 10
75533 10 | 07.000 | *.84F+11
*.84F+11
*.84F+11
*.84F+11
*.84F+11 | | 393. | 196 2 | 5490C 2 | 23.678 1. | .34E+10
.40E+10
.3>E+10 | 397
397 | 7.een 2 | 28215 | 200.555 1 | .58F+11
.59F+11 | 4 | 01.909 | 201693 | 1000.007
1000.007
1000.007 | 7.88E+11
7.68E+11
7.87E+11 | [] | | 75358 10
75185 10 | C0.C00 1 | .846.11 | #### APPENDIX B - Concluded | | | | CENTIMETER | SECONO | S (a) | HICADANPS | ELECTRONS
PER CUBIC
CENTIMETER | | SECCNOS | FEET
(a) | PECROAMPS | DEMSTTY,
ELECTAONS
PER CUBIC
CENTIMETER | | SECONDS | FEET
(a) | MICHIAPPS | CENSITY,
ELECTRONS
PER CUNIC
CENTIMETER | |---|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------|--------------------------------------|--|--|---|--------------------------------------|--|--|-----|-------------------------------|--------------------------------------|----------------------------------|--| | | 281173
286999
280824 | .100 | 5.01E+C7
9.00E+07 | 393.81
393.86 | 254355 | 29. C89
28.005 | 1.70F+10
1.63E+10 | | 357-850
357-918
357-965
397-993
398-020 | 228015
227837 | 236.226
232.725 | 1.66E+11
1.64E+11
1.63E+11 | 1 | 401.987
402.015 | 201182 | 1000.000 | 7.59E+11
7.59E+11 | | 349.858 2 | 280824
280516
280339 | .263
.223 | 1.30E+C8
1.10E+08
6.C0E+C7 | 393. 89
393. 91
393. 96 | 254925 | 28.545
29.639
31.642 | 1.66E+10
1.73E+10
1.86E+10 | | 397.985
397.993 | 227525
227346
227167 | 232.725
229.274
239.775 | 1.61E+11
1.69E+11
1.69E+11 | - 1 | 402.062
402.069
402.117 | 200520
200520
200345 | 1000.000
1000.000
1000.000 | 7.58E+11
7.58E+11
7.58E+11 | | 140-013 | 280141 | .167
.293
.113 | 1.45E+C8
5.50E+C7
6.00E+C7 | 393.99
394.02
394.07 | | 33.072
32.499
29.639 | 1.95F+10
1.91E+10
1.73E+10 | | 398.068
398.095
398.123 | 226858
226682
226506 | 262-128
278.070
286-547 | 1.86E+11
1.99E+11
Z.05E+11 | - 1 | 402.164
402.192
402.219 | 200345
200038
199860
199684 | 1000.000 | 7.585+11
7.58E+11
7.58E+11 | | | 279850
279672
279493
279182 | .123
.123
.143 | | 394.09
394.12 | 7 252869 | 29.639
28.545
26.408 | 1.73E+10
1.66E+10
1.53E+10 | | 398.170 | | | 2.396.11 | - 1 | | | 1000.000
1000.000 | 7.585+11
7.585+11 | | 390.091 | 279182
279004
278826 | .243 | 6.99E+C7
1.20E+08
2.09E+C8 | 394.17 | 252385 | 25.633 | 1.485+10 | | 398.225 | 226025
225850
225569 | 303.582
295.051
254.478 | 2.12E+11
1.80E+11 | ı | 402.294
402.322
432.369 | 199228
199053
198745 | 1000.000 | 7.58E+11 | | | 278514
278335
278156 | .603 | 2.69E+C8
2.99E+C8
3.19E+C8 | 394.22
394.27
394.30 | 5 251751 | 26.670
37.445 | 1.55E+10
2.23E+10
2.81E+10 | | 358.300
398.327
398.375 | 225392
225216
224708 | 232.725
217.015
247.027 | 1.63E+11
1.51E+11
1.74E+11 | | 402.397
402.424
402.472 | 198568
198390
198081 | 1000.000
1000.000 | 7.58E+11
7.58E+11
7.58E+11 | | 300 344 | 277828
277647
277466 | .444
.501 | 2.21E+C8
2.49E+C8
2.24E+C8 | 394.33 | 251402 | 46.160
63.497
57.727
48.774 | 4.02E+10
3.61E+10
2.99E+10 | | 398.402
398.430
398.477 | 224732 | 273.679 | 1.95E+11
2.04E+11
2.66E+11 | į | 402.499
402.574 | 197904
197727 | 1000.000 | 7.58F+11
7.58E+11
7.58E+11 | | | | .453
.385
.461
.483 | | 394.40
394.43 | | 39.020 | 2.99£.10
2.39E.10
1.75E.10 | | 398.477
398.505
398.532 | 224246
224068
223889
223577 | 364.C54
471.114
571.090 | 2.66E+11
3.53E+11
4.35E+11 | - | 402.574
402.601
402.629 | 197417
197239
197061 | 1000.000
1000.000
1000.000 | 7.58E+11
7.58E+11 | | 370.398
340.426
370.473 | 276971
276791
276473 | .483
.522 | 2.29E+C8
2.39E+C8
2.60E+08
3.03E+C8 | 394.50 | 5 250248
5 250070 | 29.917
27.471
26.933 | 1.59E+10 | | 378.560
398.607
398.635 | 223577
223400
223221 | 481.532 | 3-61E+11 | ı | 402.676 | 196747 | 1000.000 | 7.58E+11
7.58E+11 | | 390.528 | 276294
276113 | .613 | 3.44E+C8 | 394.58
394.61
374.63 | 249560 | 29.639 | 1.73E+10
1.96E+10
2.38E+10 | | | 223221
222909
222730 | 381.574
35C.584 | 2.79E+11
2.55E+11 | | 402.779
402.779 | 196385
196045 | 1000.000 | 7.58E+11
7.58E+11 | | 390.606 | 275603
275417 | 714 | 3.54E+C8 | 394-66 | 249088
248907 | 39.820
51.721
55.917 | 2.18E+10 | | 398.709
398.737
398.784 | 222551 | 355.374
346.641
368.424 | 2.51E-11
2.68E-11 | | 402.874 | 195687 | 1000.000 | 7.58E+11 | | | 275106
274936
274765 | .163
.128 | 6.11E+07
6.37E+07
6.92E+10 | 394.74
394.76 | 248726 | 56.307
50.236
45.458 | 3.50E+10
3.08E+10
2.75E+10 | | 398.811
378.839
398.886 | 222033
221854
221541 | 368.424
385.971
364.054 | 2.69E+11
2.82E+11
2.65E+11 | | 402.936
402.984 | 195194
195014
194701 | 1000.000 | 7.58E+11
7.58E+11
7.58E+11 | | | 274443
2742+2
274082 | 1.093 | 5.40E+C8
5.60E+C8
5.40E+C8 | 394.84 | 3 248039
247725 | 43.401
45.110
46.514 | 2.62E+10
2.73E+10 | | 398.914
398.941
398.989 | 221361 | 350.984 | 2.54F+11
2.61E+11
2.85E+11 | | 403.012
403.039
403.087 | 194522 | 1000.000 | 7.58F +11
7.58F +11 | | 390.834
390.882 | | | 5.40E+C8 | 394.91 | 247545 | | 2. #2E+1C | | 398.989 | 221182
22087C
220692 | 359.691
390.402
429.462 | 3-1AF+11 | | 403-114 | | 1000-009 | 7.58[-11 | | | 273591
273413
273103 | .900 | 4.17E+C8
4.46F+C8
4.26E+C8
4.61F+C8 | 394.99
395.02
395.04 | | 50.605
57.095
50.236 | 3.1CE+10
3.20E+10
3.07E+10 | | 399.016
399.044
399.119 | 220517
270930
219853 | 429.462
538.451
943.399
732.254 | 4.05E+11
7.42E+11
5.64E+11 | | 403.142
403.189
403.217 | 193694
193376
193199 | 1000.000
1000.000
1000.000 | 7.58E+11
7.58E+11 | | 391.011 | 272926 | 1.210 | 4.616+C8
5.59E+OR
7.27E+C8 | 395.09 | 246372 | 50.236
46.870
46.160 | 7.07E+10
2.84E+10
2.80E+10 | | 399.146
199.194
399.271 | 219545 | 455.191
409.608 | 3.36E+11 | | 403.244 | 193023 | 1000.000 | 7.58F - 11 | | 391.086
391.114
391.141 | 272434
272262
272085 | 2.570
3.500
4.200 | 1.71E.G9
2.C6E.09 | 395.15
395.19
395.22 | 246013
245697
245515 | 51.34R
60.957
71.912 | 3.14F+10
1.8CF+10
4.57E+10 | | 379.249
349.296
379.324 | 219196
218915
218738 | 355.334
368.424
381.574 | 2.56F • 11
2.66F • 11
2.77E • 11 | | 403.219
403.347
403.394 | 192567
192392
192084 | 1000.000
1000.000 | 7.58E + 11
7.58E + 11
7.58E + 11 | | | 271777
271603
271428 | 3.150
2.280
1.960 | 1.54F+C9
1.12E+09 | 395.25 | 245334 | 97.643
99.905
95.995 | 5.69E+10 | | 399.351
395.395
399.426 | 218561 | 399.924
46C.458 | 2.91E • 11
3.39E • 11 | | 403.422
403.449
403.497 | 191906
191728 | 1000.000 | 7.58F +11
7.58E+11 | | 371.244
371.292
191.321 | 271428
271142
270960
270778 | 1.713
1.843
2.133 | 9.665.08 | 395.32
395.35
395.43 | 7 244539 | 81.236 | 6.30E+10
5.23F+10
3.89E+10
3.35F+10 | | 399.426
399.454
399.561
399.528 | 218077 | 550.275
630.207
660.207 | 4.12E.11
4.52E.11 | | 403.497
403.525
403.552 | 191416 | 1000.000
1000.000 | 7.5AE+11 | | | 275464 | 2.137 | 9. C6E+C8
1.05E+C5
1.14E+C9
1.37E+09 | 395.43 | 244162 | 62.214
54.371
51.348 | 3.35F+10
3.146+10 | | 379.528 | 217592
217415
217238 | 544.325 | 4.C6F.11 | | 403.600
403.62#
 191059
190745
190365 | 1000-000 | 7.59F+11
7.59F+11
7.59F+11 | | | 27C287
27C109
269757 | | 1.37E+09
1.55E+09 | 395.50
395.53 | 243666 | 50.635 | 3.146.10
3.098.10
3.456.10 | | 399.556
349.603
399.631 | 217238
216925
216746
216565 | 515.358
467.402
504.655 | 3.62E+11
3.60E+11 | | 403.455 | 190345
190071 | 1000.000 | 7.59E+11
7.59E+11
7.59E+11 | | 391.500
391.528
391.555 | 269618
269439 | 4.317
4.655
3.838 | 2.12F+09
2.00E+C9
1.87E+09 | 395.56
395.60
395.63 | 7 242991 | 66.136
94.275
[19.39] | 6.15E+10 | | 399.638
399.706
399.733 | 216363
216251
216072 | 521.C72
532.617 | 3.67E+11
3.56E+11 | - 1 | 413.758
413.855 | 189687
189377 | 1000.000 | 7.59E • 11
7.59E • 11 | | | 265127
268949
268771 | 4.151
4.431
3.534 | 2.03E.09
2.18E.09
1.92E.09 | 395.66
395.71
395.73 | | 151.473
115.365
99.925 | 1.05E+11
7.69E+10
6.55E+10 | | 199.761
199.808
399.836 | 215880
215564 | 487.402
449.964
434.527 | 3.59E+11
3.29E+11
3.17E+11 | | 403.831
403.862
403.908 | 189192
189011
185697 | 1007.000 | 7.59E+11
7.59E+11 | | 391.705 | 268771
268456
268275 | 3.534
4.769
4.896
4.558 | 1.92E+09
2.35F+C9
2.42E+09
2.45E+09 | 395.76
395.81 | | 49.975
48.410
78.673 | 6.55E+10
5.72E+10
5.03E+10
4.77E+10 | | 399.836
399.863
399.911 | 215383
215202 | 434.527
434.527
496.003 | 3-17F+11 1 | - | 403.936 | | 1000.000 | 7.60F • 11
7.60E • 11
7.60E • 11 | | | 268069 | | 2.45E+09
2.42E+09 | 395.84 | 241456 | | | | 399.966 | 21488¢
214707
214527 | 520.003 | 3.61E+11
3.85E+11
4.49E+11 | | 404-011 | 188338
188325
187867 | 1000.000 | 7.60E+11 | | | 267572
267392
267277 | 4.769 | 2.356.09
2.156.09
2.186.09 | 395.91
395.94 | 240790 | 76.845
85.407
84.410 | 5.50F+10
5.71F+10 | | 400.013 | 214211
21403C | 1000.000 | 7.786.11
7.776.11 | | 404.065 | 187360 | 1000.000 | 7.60[+11
7.50[+11 | | 391.939 | 26685R
266719 | 4.431
4.713
5.441
7.521 | 2.336.09 | 396.01 | 7 240285
5 240103 | 93.415
96.855
98.574 | 6-31F+10 | | 430.068
430.116
430.143 | 213533 | 750.003 | 6.89[•11
5.70F •11 | İ | 404.167 | 187010 | 1000.000 | 7.616 •11
7.616 •11 | | 372.742 | 2664C6 | 7.521
9.922
11.493 | 3.81F+C9
5.12E+C9
5.99E+C9 | 396.07
396.12
396.14 | 239607 | 98.574
100.222
103.518 | 6.43E+10
6.54E+10 | | 400.171 | 213174
212858
212677 | 570.007
585.007 | 4.64E-11
4.24[+11
4.36E-11 | | 404.211
404.211 | 186526
186375
184067
185870 | 1900.000 | 7.61E-11
7.61E-11
7.61F-11 | | | 266050
265739
265562 | 10.403 | 6.11E+C9
5.40E+09
4.38E+09 | 396.17 | 239248 | 124.078
160.645
170.742 | 8.30F + 10
1.11E + 11
1.19E + 11 | | 400.273 | 212496 | 670.003
770.003 | | | 404.347 | 185713 | 1000.000 | 7.626-11
7.626-11 | | | 265562
265385
265077 | 8-331 | | 396.25
396.27 | | | | | 420.348 | 212001 | | 7.53E-11
7.73E-11 | | 404.427 | 185404 | 1060.000 | | | | 264750
264443 | 6.504
5.967
5.779
6.748 | 3.01f.cq
2.92f.09
3.44f.00 | 396.32
396.35
394.38 | | 124.078
106.169
95.995 | 8.28E+10
6.95F+10
6.22F+10 | | 430.423 | 211507
211327
211148 | 1600.003 | 7.73E+11
7.73E+11
7.73E+11 | | 404.552 | 185052
184741
184562 | 1000.000 | 7.62E-11
7.62F-11
7.62F-11 | | 392.323
192.323
372.378
392.425
372.453
392.460
392.528 | 264268
264093
263763 | 7.521 | 3.86E+09
5.C9E+C9
7.37E+09 | 396.45
396.45 | 237397 | 93.415 | 5.57E+10
6.03E+10 | | 430.478
430.525
430.553
430.580 | 210832 | 1000.000 | 7.72E+11
7.71E+11 | | 474.627 | 184343 | 1000.000 | 7.62F+11
7.63F+11 | | 392.453 | 263605
263427
263115 | 13.741 | 8.21E+09
7.75E+09 | 396.48
396.52
336.55 | 235709 | 101.426
139.797
160.845 | 6.59E+10
9.43E+10
1.10f+11 | | 410.628 | 210154
210154
209974 | 1000.003
1000.003 | 7.716.11
7.716.11
7.706.11 | | 404.654
404.682
404.729 | 183892
183713
183398 | 1000.000 | 7.635.11 | | 392.528 | 267115
262936
262757 | 13.046 | 6.99F+09
5.81E+09
5.72F+09 | 396.5R
396.63
396.65 | | 217-015 | | | 430.643
430.730
433.757
430.765 | 209755 | 1000.000 | 7.70f.11 | | 434.757
404.764
404.812 | 193204
153023
182707 | 1000.030
1000.030
1003.030 | 7.636 -11 | | | | | | | | 217.015
197.527
137.052 | 1.56F+11
1.54E+11
1.31F+11 | | 430.765 | 2C43C1
2C9122
2C86C7 | 1000.007 | 7.70E+11
7.69[+11 | ł | 404. 654 | 162528 | 1000.000 | 7.64F • 11
7.64E • 11 | | 392.659
392.686
372.734 | 262262
262081
261765
261555 | 10.091
10.796
11.676 | 5.34F+09
5.74F+09
6.37E+09 | 396.73
396.76
396.78 | | 129.116 | 9.20E.10
9.20E.10 | | 430.832
430.859
430.887 | 208628 | 1000.000 | 7.69E+11
7.65E+11 | | 404.934 | 161951 | 1000.000 | 7.64F+11
7.64F+11 | | 192.789 | 261378 | 12.501
12.501
13.046 | 6.74E.09
6.75E.09
7.08E.09 | 396.87 | | 120.571 | #.416+10
9.196+10 | | 430.934
430.962
400.989 | 20 79 5 1
20 79 5 1
26 77 76 | 1000.003 | 7.68E-11
7.68E-11
7.67E-11 | | 405.037
405.065 | 161670 | 1000.030 | 7.45E-11
7.45E-11 | | 372.165 | 260882
260702 | 12.685
13.398
14.574 | 6.87E+09
7.29E+09 | 396.94 | 234288 | 157.662 | 1.076.11 | | 401.037 | 207453 | 1000.003 | 7.67E+11
7.67E+11 | | 405.C92 | 180910 | 1000.000 | 7.65E+11
7.65F+11 | | 392.940 | 260388 | 14.574
16.719
18.751
22.530 | 7.99E+09
9.27E+09
1.05E+10 | 396.99 | 233625 | 174.159
174.159
177.633 | 1.20E+11
1.20E+11
1.22E+11 | | 401.052
401.140
401.167 | 20 10 90
20 6 175
20 6 5 9 5 | 1000.003 | 7.66E+11
7.65E+11 | | 405.168
405.155
405.243 | 180497
180310
179993
179799 | 1000.000 | 7.65F+11
7.65F+11
7.66E+11 | | | 260030
259726
255543 | 22.533 | 1.28E+10 | 397.66
397.09
397.14
397.17 | 233270
232957
232777 | | 1.226.11
1.406.11
1.526.11 | | 401.242
401.270 | 206416 | 1000-003 | 7.65E-11
7.65E-11
7.64E-11 | | 405.271 | 179799 | 1007.630 | 7.664.11
7.664.11 | | 373.098 | 259368
259368
25939 | 21.563
19.964
14.974 | 1.13£+10
8.27E+09 | | | 200.555
215.972
229.274 | | | 431.270 | 20610C
205918
265737 | 1000.003 | 7.64E+11
7.63E+11
7.63E+11 | 1 | 405.346 | 179619
179304
179126 | 1000.000 | 7.60F+11
7.60E+11
7.66E+11 | | 393.23C | 258705
258397 | 13.573
13.223
13.046 | 7.44E+09
7.24E+69
7.14E+09 | 397.24
397.27
397.30 | | 215.972
203.831
184.289 | 1.52E+11
1.42E+11
1.27E+11 | | 401.297
431.345
431.372
431.400 | 205422
205242
205063 | 1000.003 | 7.636.11 | 1 | 405.401
405.448
405.476 | 178635 | 1000.000 | 7.67E+11
7.67E+11 | | | 250246
250076
257763 | 13.C46
14.379
17.595
27.471 | 7.92E+C9
1.01F+10
1.59E+10 | 397.34
397.37
397.40 | 231594
7 231412
9 231231 | 157.662
157.662
160.845 | 1.076.11 | | 431.447
431.475
401.502 | 204747
204565
204384 | 1000.000 | 7.62E+11
7.62E+11
7.61E+11 | - 1 | 405.503
405.551
405.579 | 178274
177966
177788 | 1003.000 | 7.67E+11
7.67E+11
7.68E+11 | | | 257587
257412
257102 | 27.471
38.632
38.334
30.756 | 2.31E.1C
2.29E.10 | 397.45 | 2 230915 | 194.025 | 1.346+11
1.50E+11 | | 401.550 | 204069 | 1000.003 | 7.61E+11
7.61E+11 | | 405.606 | 177611
177301
177124 | 1000.000 | 7.68E+11
7.68E+11 | | | 256924 | 3C.756
26.148
22.299
18.751 | 1.80F+10
1.51F+10 | 397.57 | 7 230556 | 216.226 | 1.67E+11
2.30E+11 | | 401.605
401.652
401.679
401.707 | 203310 | 1000.000 | 7.616.11 | | 405.682 | 176948 | 1000-000 | 6.83E+11 | | 393.556 | 256745
256432
256253 | | 1.27E+10
1.06E+1C
9.78E+C9 | 397.60
397.60 | 7 220541 | 342.305
320.725
243.377 | 2.52E+11
2.34E+11
1.72E+11 | | 431.754 | 203216
203036
202708 | 1000.000 | 7.60E+11
7.60E+11
7.60E+11 | | 405.757
405.765
405.612 | 176640
176464
176289 | 1000.000 | 7.69E+11
7.69E+11
7.69E+11 | | 373.611 | 256073
255758
255576 | 19.677
21.569
23.633 | 1.11F+10
1.23E+10 | 397.68 | 229379 | 219.222
207.116
210.407 | 1.53E • 11
1.44f • 11
1.47E • 11 | | 401.754
401.782
401.809
401.857
401.885 | 202527 | 1030.003 | 7.60E+11
7.59E+11
7.59E+11 | | 405.860
435.887
405.915 | 175985
175812
175619 | 1000.000 | 7.69E • 11
7.70E • 11 | | 393.714 | 255397
255057 | 26.408
29.917 | 1.36F+1C
1.53E+10
1.75E+10 | 397.76
397.78
397.81 | 228587 | 209.555 | 1.396+11 | | | 202031
201851
201671 | 1000.000 | 7.59E+11
7.59E+11 | i | 405.915
405.562
405.990 | 175619
175337
175163 | 1000.000 | 7.70F+11
7.70F+11
7.7CE+11 | | 393.789 | 254878 | 29.637 | 1.736.10 | 397.86 | 558143 | 272.523 | 1.566+11 | | 431.960 | 201)59 | 1000.000 | 7.59E+11 | L | | | | | #### APPENDIX C #### ANALYSIS OF SPACECRAFT MOTIONS AND WIND ANGLES ### By William L. Weaver Langley Research Center The spacecraft axis system employed and its relation to the wind axis are illustrated in figure 41. The rate gyro data show coning of the RAM C-I and C-II spacecraft after separation of the expended fourth-stage motors, but the very low dynamic pressures and resulting low accelerations did not permit accurate determinations of the spacecraft wind angles from accelerometer data. Coning of the spacecraft was also indicated by the cyclic variations in the electrostatic probe-measured electron densities observed during both flights. Figure 42 shows the correlation of measured normal aerodynamic acceleration with variations in electron densities measured by probe 1 on RAM C-II
during the last few seconds before probe-rake retraction. Figure 43 shows that the electrostatic probe rake was in the same plane as the measured normal acceleration, and thus the correlation of figure 42 suggests that the cyclic variations in measured electron densities were due to displacements of the probe rake from the wind axis in the angle-of-attack (α) plane. The variations were generally symmetrical; this symmetry further suggest that the average value of the electron densities corresponded to the zero-angle-of-attack case. #### Determination of Wind Angles Prior to separation of the fourth-stage motors, the RAM C-I and C-II spacecraft had roll momenta only with the X-axes fixed in direction. The separation impulses produced uniform coning (precession) of the X-axes about the total angular momentum vectors. The motion is illustrated in figure 44, and the equations which describe it are $$\mathbf{L} = \mathbf{I}_{l} \omega_{l} \tag{C1}$$ $$\tan \theta = \frac{I_{\ell} \omega_{\ell}}{I_{X} p} \tag{C2}$$ $$\nu_{\rm H} = \frac{I_{\rm X}p}{I_{\rm I}\cos\theta} \frac{1}{2\pi} \tag{C3}$$ $$\nu_{\rm b} = \frac{\mathbf{I}_{\rm X} - \mathbf{I}_{l}}{\mathbf{I}_{l}} \frac{\mathbf{p}}{2\pi} \tag{C4}$$ Values computed by these equations for both flights are given in table V. The preflightmeasured moments of inertia and the flight-measured rotation rates are given in table VI. It can be seen from figures 41 and 44 that for the case of $\eta_0 = 0$ (X-axes initially alined with velocity vectors), the total wind angles will describe the cones of half-angle θ . Thus the absolute change in the total wind angle $(|\Delta \eta|)$ is given by 2θ . To study the spacecraft motions further, a computer-programed set of equations for the angular motions of a rigid body was employed. At about 380 seconds, short-duration (0.01 second) angular impulses were applied; these impulses produced matchups of the gyro-measured lateral rotation rates. Total wind angle was set to zero $(\eta_0 = 0)$. Figure 45 shows the comparisons of the measured and program-computed spacecraft rotation rates. The required impulses were $$L = 3.93 \text{ N-m-sec}$$ (2.9 lb-ft-sec) (RAM C-I) $$L = 3.25 \text{ N-m-sec} \quad (2.4 \text{ lb-ft-sec}) \quad (RAM C-II)$$ These values are in good agreement with the impulses computed by equation (C1). (See table V.) Figure 45 shows that both the magnitudes and frequencies of the rotation rates are closely matched. The frequencies are identical with the values of $\nu_{\rm b}$ given in table V. Figure 46 shows the histories of the program-computed values of the wind angles for the computer runs which produced the matchup in rotation rates. These values are not the actual histories of the in-flight wind angles. They do represent the characteristic trends, and the frequencies and absolute variations in the angles should closely approximate those in flight. Note that the maximum values of η are twice the values of the cone angles θ in table V and that the frequencies of η are identical to those listed for $\nu_{\mathbf{H}}$ in table V. The component wind angles (α,β) are seen to have variations approximately equal to $\pm 2\theta$ because the spacecraft is rolling on the surface of the precession cone as illustrated in figure 44. If it is assumed that the velocity vectors were alined with the spacecraft X-axes at stage separations, the variations in η were $$0 \le \eta \le 5^{O}$$ (for RAM C-I) $$0 \le \eta \le 4^{O}$$ (for RAM C-II) and the peak-to-peak variations in the component wind angles were $$\alpha, \beta = \pm 5^{O}$$ (for RAM C-I) $\alpha, \beta = \pm 4^{O}$ (for RAM C-II) $$\alpha, \beta = \pm 4^{\circ}$$ (for RAM C-II) #### APPENDIX C - Concluded #### Summary of Wind-Angle Analysis Cyclic changes in the measured electron densities were shown to be due to the displacements of the electrostatic probe from the wind axis in the angle-of-attack (α) plane. Peak-to-peak variations in the densities were produced by variations in angle of attack of $\alpha = \pm 5^{\circ}$ (for RAM C-I) and $\alpha = \pm 4^{\circ}$ (for RAM C-II). The symmetry of the density variation suggests that the average values corresponded to the case where $\alpha = 0$. #### REFERENCES - 1. Bachynski, M. P.: Electromagnetic Wave Penetration of Reentry Plasma Sheaths. Radio Sci., J. Res. NBS, vol. 69D, no. 2, Feb. 1965, pp. 147-154. - 2. Anon.: Proceedings of the NASA Conference on Communicating Through Plasmas of Atmospheric Entry and Rocket Exhaust. NASA SP-52, 1964. - 3. Akey, Norman D.: Overview of RAM Reentry Measurement Program. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1970, pp. 19-31. - 4. Jones, William Linwood, Jr.: Probe Measurements of Electron Density Profiles During a Blunt-Body Reentry. Ph. D. Thesis, Virginia Polytechnic Inst. & State Univ., June 1971. - 5. Jones, W. Linwood, Jr.; and Cross, Aubrey E.: Electrostatic Probe Measurements of Plasma Surrounding Three 25 000 Foot Per Second Reentry Flight Experiments. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1970, pp. 109-136. - 6. Akey, Norman D.; and Cross, Aubrey E. (With appendix A by Thomas G. Campbell; appendix B by Fred B. Beck; and appendix C by W. Linwood Jones, Jr.): Radio Blackout Alleviation and Plasma Diagnostic Results From a 25000 Foot Per Second Blunt-Body Reentry. NASA TN D-5615, 1970. - 7. Grantham, William L.: Flight Results of a 25 000-Foot-Per-Second Reentry Experiment Using Microwave Reflectometers To Measure Plasma Electron Density and Standoff Distance. NASA TN D-6062, 1970. - 8. Sutton, Kenneth; Zoby, Ernest V.; and Butler, David H.: An Evaluation Test of a Full-Scale Replica of the RAM-CA Flight Heat Shield in a Rocket-Engine Exhaust. NASA TM X-1841, 1969. - 9. Schexnayder, Charles J., Jr.; Huber, Paul W.; and Evans, John S.: Calculation of Electron Concentration for a Blunt Body at Orbital Speeds and Comparison With Experimental Data. NASA TN D-6294, 1971. - 10. Swift, C. T.; Gooderum, P. B.; and Castellow, S. L., Jr.: Experimental Investigation of a Plasma Covered, Axially Slotted Cylinder Antenna. IEEE Trans. Antennas Propagation, vol. AP-17, no. 5, Sept. 1969, pp. 598-605. - 11. Croswell, William F.; and Jones, W. Linwood, Jr.: Effects of Reentry Plasma on RAM C-I VHF Telemetry Antennas. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1970, pp. 183-201. - 12. Scharfman, W. E.: The Use of Langmuir Probes To Determine the Electron Density Surrounding Re-Entry Vehicles. SRI Project 5034 (Contract NAS 1-3942), Stanford Res. Inst., June 1965. - 13. Scharfman, W. E.; and Bredfeldt, H. R.: Use of the Langmuir Probe To Determine the Electron Density and Temperature Surrounding Re-Entry Vehicles. SRI Project 5771 (Contract NAS 1-4872), Stanford Res. Inst., Dec. 1966. (Available as NASA CR-66275.) - 14. Hok, Gunnar; Spencer, N. W.; Reifman, A.; and Dow, W. G.: Dynamic Probe Measurements in the Ionosphere. AFCRC TN-58-616, U.S. Air Force, Nov. 1958. - 15. Smetana, Frederick O.: On the Current Collected by a Charged Circular Cylinder Immersed in a Two-Dimensional Rarefied Plasma Stream. Rarefied Gas Dynamics, Vol. II, J. A. Laurmann, ed., Academic Press, Inc., 1963, pp. 65-91. - 16. Dunn, Michael G.: Laboratory Measurements of Electron Density and Electron Temperature With RAM Flight Probes. The Entry Plasma Sheath and Its Effect on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1970, pp. 261-276. - 17. Dunn, Michael G.: Experimental Plasma Studies. NASA CR-1958, 1972. - 18. Webb, H., Jr.; Dresser, H.; Korkan, K.; and Raparelli, R.: Theoretical Flow Field Calculations for Project RAM. NASA CR-1308, 1969. - 19. Suits, C. Guy; and Way, Harold E., eds.: The Collected Works of Irving Langmuir. Vol. 4 Electrical Discharge. Pergamon Press, Inc., c.1961. - 20. Laframboise, James G.: Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest. Rep. No. 100, Inst. Aerosp. Studies, Univ. of Toronto, June 1966. (Available from DDC as AD 634 596.) - 21. Bernstein, Ira B.; and Rabinowitz, Irving N.: Theory of Electrostatic Probes in a Low-Density Plasma. Phys. Fluids, vol. 2, no. 2, Mar.-Apr. 1959, pp. 112-121. - 22. Allen, J. E.; Boyd, R. L. F.; and Reynolds, P.: The Collection of Positive Ions by a Probe Immersed in a Plasma. Proc. Phys. Soc., vol. 70, pt. 3, no. 447B, Mar. 1, 1957, pp. 297-304. - 23. Lam, S. H.: The Langmuir Probe in a Collisionless Plasma. AFOSR 64-0353, U.S. Air Force, Mar. 1964. (Available from DDC as AD 434 342.) - 24. Chen, Francis F.: Numerical Computations for Ion Probe Characteristics in a Collisionless Plasma. MATT-252 (Contract AT(30-1)-1238), Plasma Phys. Lab., Princeton Univ., Feb. 1964. - 25. Chen, Francis F.: Electric Probes. Plasma Diagnostic Techniques, Richard H. Huddlestone and Stanley L. Leonard, eds., Academic Press, 1965, pp. 113-200. - 26. Bohm, David.; Burhop, E. H. S.; and Massey, H. S. W.: The Use of Probes for Plasma Exploration in Strong Magnetic Fields. The Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R. K. Wakerling, eds., McGraw-Hill Book Co., Inc., 1949, pp. 13-76. - 27. Sonin, A. A.: The Behaviour of Free Molecular Cylindrical Langmuir Probes in Supersonic Flows, and Their Application to the Study of the Blunt Body Stagnation Layer. UTIAS Rep. No. 109, Univ. of Toronto, Aug. 1965. - 28. Hoegy, W. R.; and Brace, L. H.: The Dumbbell Electrostatic Ionosphere Probe: Theoretical Aspects. Rep. JS-1 (Contracts AF 19(604)6124, DA-20-018-509-ORD-103, and NASw-139), College Eng., Univ. Michigan, Sept. 1961. TABLE I.- ALTITUDE, VELOCITY, AND TIME OF RAM C-I AND RAM C-II* REENTRY TRAJECTORIES | A | ltitude | Vel | ocity | Time from | | | Altitude | Ve | locity | Time from | |-------|---------------------|-------
--------|------------------|---|------|---------------------|-------|--------|------------------| | km | ft | m/sec | ft/sec | lift-off,
sec | | km | ft | m/sec | ft/sec | lift-off,
sec | | 152.4 | 500×10^{3} | 7012 | 23 004 | 355.98 | | 77.7 | 255×10^{3} | 7657 | 25 121 | 393.77 | | 150.9 | 495 | 7095 | 23 279 | 356.83 | 1 | 76.2 | 250 | 7661 | 25 135 | 394.54 | | 149.4 | 490 | 7183 | 23 567 | 357.64 | | 74.7 | 245 | 7670 | 25 164 | 395.30 | | 147.8 | 485 | 7277 | 23 875 | 358.42 | | 73.2 | 240 | 7664 | 25 143 | 396.07 | | 146.3 | 480 | 7366 | 24 166 | 359.19 | | 71.6 | 235 | 7660 | 25 131 | 396.83 | | 144.8 | 475 | 7460 | 24 476 | 359.98 | | 70.1 | 230 | 7662 | 25 139 | 397.59 | | 143.2 | 470 | 7527 | 24 696 | 360.77 | | 68.6 | 225 | 7665 | 25 148 | 398.36 | | 141.7 | 465 | 7564 | 24 816 | 361.57 | | 67.0 | 220 | 7670 | 25 165 | 399.13 | | 140.2 | 460 | 7580 | 24 872 | 362.34 | 1 | 65.5 | 215 | 7668 | 25 156 | 399.89 | | 138.7 | 455 | 7579 | 24 866 | 363.11 | | 64.0 | 210 | 7664 | 25 145 | 400.65 | | 137.2 | 450 | 7578 | 24 863 | 363.87 | | 62.5 | 205 | 7657 | 25 123 | 401.41 | | 135.6 | 445 | 7580 | 24 872 | 364.64 |] | 61.0 | 200 | 7651 | 25 102 | 402.18 | | 134.1 | 440 | 7587 | 24 892 | 365,40 | | 59.4 | 195 | 7655 | 25 115 | 402.94 | | 132.6 | 435 | 7590 | 24 902 | 366.18 | | 57.9 | 190 | 7653 | 25 108 | 403.71 | | 131.1 | 430 | 7596 | 24 920 | 366.95 | | 56.4 | 185 | 7643 | 25 076 | 404.48 | | 129.5 | 425 | 7597 | 24 926 | 367.73 | 1 | 54.9 | 180 | 7640 | 25 064 | 405.25 | | 128.0 | 420 | 7594 | 24 916 | 368.49 | | 53.3 | 175 | 7630 | 25 034 | 406.02 | | 126.5 | 415 | 7594 | 24 914 | 369.25 | | 51.8 | 170 | 7623 | 25 009 | 406.02 | | 125.0 | 410 | 7597 | 24 924 | 370.00 | | 50.3 | 165 | 7610 | 24 967 | 1 | | 123.4 | 405 | 7602 | 24 941 | 370.75 | ĺ | 48.8 | 160 | 7596 | 24 967 | 407.56
408.32 | | | | | | | | | l . | | 1 | | | 121.9 | 400 | 7609 | 24 965 | 371.52 | | 47.2 | 155 | 7568 | 24 829 | 409.09 | | 120.4 | 395 | 7614 | 24 982 | 372.30 | | 45.7 | 150 | 7544 | 24 752 | 409.86 | | 118.9 | 390 | 7611 | 24 971 | 373.08 | | 44.2 | 145 | 7517 | 24 663 | 410.64 | | 117.3 | 385 | 7610 | 24 967 | 373.85 | | 42.7 | 140 | 7477 | 24 532 | 411.42 | | 115.8 | 380 | 7610 | 24 969 | 374.61 | | 41.4 | 135 | 7432 | 24 384 | 412.20 | | 114.3 | 375 | 7612 | 24 973 | 375.37 | l | 39.6 | 130 | 7363 | 24 157 | 412.99 | | 112.8 | 370 | 7616 | 24 986 | 376.14 | | 38.1 | 125 | 7279 | 23 882 | 413.80 | | 111.2 | 365 | 7617 | 24 991 | 376.92 | | 36.6 | 120 | 7182 | 23 563 | 414.61 | | 109.7 | 360 | 7619 | 24 996 | 377.70 | ļ | 35.0 | 115 | 7072 | 23 202 | 415.43 | | 108.2 | 355 | 7622 | 25 008 | 378.47 | | 33.5 | 110 | 6938 | 22 763 | 416.26 | | 106.7 | 350 | 7626 | 25 019 | 379.23 | | 32.0 | 105 | 6759 | 22 176 | 417.12 | | 105.2 | 345 | 7629 | 25 029 | 379.99 | | 30.5 | 100 | 6539 | 21 455 | 418.00 | | 103.6 | 340 | 7627 | 25 024 | 380.75 | | 29.0 | 95 | 6232 | 20 446 | 418.91 | | 102.1 | 335 | 7629 | 25 031 | 381.52 | | 27.4 | 90 | 5938 | 19 483 | 419.87 | | 100.6 | 330 | 7631 | 25 037 | 382.29 | | 25.9 | 85 | 5555 | 18 226 | 420.87 | | 99.1 | 325 | 7628 | 25 026 | 383.07 | | 24.4 | 80 | 5089 | 16 697 | 421.96 | | 97.5 | 320 | 7628 | 25 025 | 383.86 | | 22.9 | 75 | 4552 | 14 935 | 423.16 | | 96.0 | 315 | 7633 | 25 042 | 384.63 | | 21.3 | 70 | 3945 | 12 942 | 424.51 | | 94.5 | 310 | 7640 | 25 065 | 385.39 | | 19.8 | 65 | 3238 | 10 624 | 426.12 | | 93.0 | 305 | 7650 | 25 098 | 386.14 | | 18.3 | 60 | 2438 | 8 000 | 428.22 | | 91.4 | 300 | 7649 | 25 094 | 386.88 | | 16.8 | 55 | 1739 | 5 706 | 430.88 | | 89.9 | 295 | 7646 | 25 087 | 387.64 | | 15.2 | 50 | 1049 | 3 441 | 434.69 | | 88.4 | 290 | 7642 | 25 074 | 388.40 | | 13.7 | 45 | 581 | 1 906 | 440.26 | | 86.9 | 285 | 7645 | 25 082 | 389.17 | | 12.2 | 40 | 271 | 890 | 448.98 | | 85.3 | 280 | 7649 | 25 095 | 389.93 | | 10.7 | 35 | 220 | 721 | 459.34 | | 83.8 | 275 | 7651 | 25 103 | 390.70 | | 9.1 | 30 | 239 | 785 | 467.88 | | 82.3 | 270 | 7649 | 25 094 | 391.46 | | 7.6 | 25 | 227 | 744 | 475.40 | | 80.8 | 265 | 7649 | 25 096 | 392.23 | | 6.1 | 20 | 276 | 907 | 484.45 | | | | | | | | | | | | | ^{*}For time correlation purposes, between the times of 386.88 and 406.79 seconds, the C-II spacecraft was 365.8 m (1200 ft) higher in altitude than listed in the table with a velocity of approximately 18 m/sec (60 ft/sec) greater than the value listed. TABLE IL - POSITION OF FUNCTIONAL PARTS ON THE RAM C-I AND C-II PAYLOADS | | | x | | ϕ , deg | x/D | |----------|--|-----------|------------|--------------|------| | Payload | Part and function | cm
(a) | in.
(a) | deg
(a) | (b) | | | Water-injection no | zzle | | | | | RAM C-I | Stagnation | 0 | 0 | | 0 | | i | Lateral | 15.2 | 6.0 | 0 | .48 | | | Lateral | 15.2 | 6.0 | 180 | .48 | | | Antenna | | | | | | RAM C-II | S-band open-ended guide (3344 MHz) | 4.6 | 1.8 | 90 | 0.15 | | | X-band conical horn (10 044 MHz) | 4.6 | 1.8 | 330 | .15 | | | Ka-band conical horn (35 000 MHz) | 4.6 | 1.8 | 210 | .15 | | | L-band open-ended guide (1116 MHz) | 23.1 | 9.1 | 195 | .76 | | | S-band open-ended guide (3344 MHz) | 23.1 | 9.1 | 15 | .76 | | | X-band conical horn (10 044 MHz) | 23.1 | 9.1 | 285 | .76 | | | Ka-band conical horn (35 000 MHz) | 23.1 | 9.1 | 227 | .76 | | | L-band open-ended guide (1116 MHz) | 70.1 | 27.6 | 195 | 2,30 | | | S-band open-ended guide (3344 MHz) | 70.1 | 27.6 | 15 | 2.30 | | | X-band conical horn (10 044 MHz) | 70.1 | 27.6 | 285 | 2,30 | | | Ka-band conical horn (35 000 MHz) | 70.1 | 27.6 | 105 | 2.30 | | RAM C-I | VHF axial cavity-backed slot (259.7 MHz) | 75.2 | 29.6 | 0 | 2.36 | | | VHF axial cavity-backed slot (259.7 MHz) | 75.2 | 29.6 | 180 | 2.36 | | RAM C-I | X-band rectangular horn (9210 MHz) | 82.8 | 32.6 | 60 | 2.60 | | | X-band rectangular horn (9210 MHz) | 82.8 | 32.6 | 150 | 2,60 | | | X-band rectangular horn (9210 MHz) | 82.8 | 32.6 | 240 | 2,60 | | | X-band rectangular horn (9210 MHz) | 82.8 | 32.6 | 330 | 2.60 | | RAM C-II | X-band rectangular horn (9210 MHz) | 80.5 | 31.7 | 15 | 2.65 | | | X-band rectangular horn (9210 MHz) | 80.5 | 31.7 | 105 | 2.65 | | | X-band rectangular horn (9210 MHz) | 80.5 | 31.7 | 195 | 2.65 | | | X-band rectangular horn (9210 MHz) | 80.5 | 31.7 | 285 | 2.65 | | RAM C-II | VHF circumferential-slot array (259.7 MHz) | 97.5 | 38.4 | | 3.20 | | RAM C-I | VHF circumferential-slot array (225.7 MHz) | 109.2 | 43.0 | | 3.42 | | RАМ С-П | L-band open-ended guide (1116 MHz) | 106.2 | 41.8 | 195 | 3.48 | | | S-band open-ended guide (3344 MHz) | 106.2 | 41.8 | 15 | 3.48 | | | X-band conical horn (10 044 MHz) | 106.2 | 41.8 | 285 | 3.48 | | | Ka-band conical horn (35 000 MHz) | 106.2 | 41.8 | 105 | 3.48 | | RAM C-II | C-band rectangular horn (5800 MHz) | 106.7 | 42.0 | 32 | 3.50 | | RAM C-I | C-band rectangular horn (5700 MHz) | 118.4 | 46,6 | 30 | 3.71 | | RAM C-II | VHF circumferential-slot array (225.7 MHz) | 114.8 | 45,2 | | 3.76 | | | Probe rake | | | | | | RAM C-I | Electrostatic | 123.4 | 48.6 | 0 | 3.87 | | | Thermocouple | 123.4 | 48.6 | 180 | 3.87 | | RAM C-II | Electrostatic | 123.4 | 48.6 | 0 | 4.05 | | | Thermocouple | 123.4 | 48.6 | 180 | 4.05 | a Center-line location of parts. $^{^{\}rm b}$ Nose diameter D is 31.90 cm (12.56 in.) for RAM C-I; nose diameter D is 30.48 cm (12.00 in.) for RAM C-IL TABLE III.- RAM C-I TYPICAL INJECTION CYCLE AND FLOW RATE HISTORY | | Valve for - | | Flow rate | | A | Altitude | | Valve for - | | Flow rate | | Altitude | | |-------|----------------------|-------------------|-----------|--------|------|----------|-------|----------------------|-------------------|-----------|--------|----------|---------| | Cycle | Stagnation injection | Side
injection | kg/sec | lb/sec | km | ft | Cycle | Stagnation injection | Side
injection | kg/sec | lb/sec | km | ft | | 1 | 5 | | 0 | 0 | | | 5 | 5 | | 0.023 | 0.05 | 61.1 | 200 490 | | | 6 | | 0 | 0 | | | | 6 | | .068 | .15 | 60.1 | 197 236 | | | 7 | | 0 | 0 | ł | | 1 | 7 | | .127 | .28 | 59.1 | 193 982 | | ļ | | 1 | 0 | 0 | 1 | | | | 1 | .045 | .10 | 58.1 | 190 724 | | | | 2 | 0 | 0 | Ì | | | | 2 | .109 | .24 | 57.1 | 187 462 | | | | 3 | 0 | 0 | l | | 1 1 | | 3 | .295 | .65 | 56.1 | 184 202 | | | | 4 | 0 | 0 | | <u></u> | | | 4 | .458 | 1.01 | 55.2 | 180 943 | | 2 | 5 | | 0 | 0 | 85.0 | 278 908 | 6 | 5 | | 0.027 | 0.06 | 53.2 | 174 451 | | | 6 | | 0 | 0 | 84.0 | 275 639 | | 6 | | .082 | .18 | 52.2 | 171 212 | | i | 7 | | .014 | .03 | 83.2 | 273 027 | | 7 | | .163 | .36 | 51.2 | 167 968 | |] | Ì | 1 | .004 | .01 | 82.0 | 269 115 | 1 1 | | 1 | .059 | .13 | 50.2 | 164 722 | | | | 2 | .018 | .04 | 81.0 | 265 866 | | | 2 | .145 | .32 | 49.2 | 161 466 | | | | 3 | .045 | .10 | | 262 616 | 1 | | 3 | .408 | .90 | 48.2 | 158 199 | | | | 4 | .068 | .15 | 79.0 | 259 363 | | | 4 | .644 | 1.42 | 47.2 | 154 937 | | 3 | 5 | | 0.009 | 0.02 | 77.1 | 252 861 | 7 | 5 | | 0.032 | 0.07 | 45.2 | 148 484 | | | 6 | | .032 | .07 | 76.1 | 249 598 | | 6 | 1 | .104 | .23 | 44.3 | 145 267 | | ļ | 7 | I | .064 | .14 | | 246 328 | | 7 | ĺ | .195 | .43 | 43.3 | 142 058 | | - 1 | | 1 | .027 | .06 | | 243 048 | | i | 1 | .068 | .15 | 42.3 | 138 864 | |] | j | 2 | .064 j | .14 | | 239 771 | | | 2 | .159 | .35 | 41.4 | 135 684 | | | ŀ | 3 | .181 | .40 | | 236 486 | | | 3 | .444 | .98 | 40.4 | 132 511 | | | | 4 | .299 | .66 | 71.1 | 233 205 | | | 4 | .703 | 1.55 | 39.5 | 129 532 | | 4 | 5 | | 0.018 | 0.04 | 69.1 | 226 690 | 8 | 5 | | 0.036 | 0.08 | 37.5 | 123 137 | | | 6 | İ | .054 | .12 | 68.1 | 223 442 | | 6 | | .109 | .24 | 36.6 | 120 058 | | | 7 | - 1 | .109 | .24 | 67.1 | 220 185 | | 7 | ł | .195 | .43 | 35.7 | 117 010 | | | 1 | 1 | .036 | .08 | 66.1 | 216 915 | - 1 | | 1 | .068 | .15 | 34.7 | 113 987 | | | | 2 | .095 | .21 | 65.1 | 213 635 | | | 2 | .159 | .35 | 33.8 | 110 986 | | | | 3 | .249 | - 1 | | 210 348 | | j | 3 | 0 | 0 | | 1 | | | | 4 | .404 | .89 | 63.1 | 207 054 | - 1 | i | 4 | o | 0 | 1 | ĺ | TABLE IV. - RAM C-I AND RAM C-II
RADIO-FREQUENCY SYSTEMS | | | Frequency | | | Transmitter | | | | | |--------------------------------|---------------------|-----------|--------|----------------------------|-----------------------------------|------------|----------------------------|--|--| | Payload | Purpose | Band | MHz | Antenna type | Approximate
RF power,
watts | Modulation | Body location,
x/D | Remarks | | | RAM C-I | Real-time telemetry | VHF | 259.7 | Axial cavity-backed slots | 5 | FM | 2.36 | Two slots, diametrically opposed | | | RAM С-П | | VHF | 259.7 | Circumferential-slot array | 5 | FM | 3.20 | | | | RAM C-I Delayed-time telemetry | | VHF 225.7 | | Circumferential-slot array | 5 | FM | 3.42 | Same data as real-time telemetry, | | | RAM С-П | | VHF | 225.7 | Circumferential-slot array | 5 | FM | 3.76 | but delayed by onboard tape loop
for approximately 45 sec | | | RAM C-I | Radar beacon | С | 5 700 | Rectangular horn | 900 peak | Pulse | 3.71 | | | | RAM C-II | | С | 5 800 | Rectangular horn | 800 peak | Pulse | 3.50 | | | | RAM C-I | Real-time telemetry | Х | 9 210 | Rectangular-horn array | 500 peak | PPM | 2.60 | Four horns, 90° spacing | | | RAM C-II | | х | 9 210 | Rectangular horn | 500 peak | PPM | 2.65 | Four horns, 90° spacing | | | RAM C-II | Reflectometer | L | 1 116 | T-fed slot | 0.1 | CW | , 0.76, 2.30, and 3.48 | Station number 1; x/D of 0.15 | | | | experiment | s | 3 344 | Open-ended waveguide | .1 | CW | 0.15, 0.76, 2.30, and 3.48 | Station number 2; x/D of 0.76 | | | | | х | 10 044 | Conical horn | .1 | CW | 0.15, 0.76, 2.30, and 3.48 | Station number 3; x/D of 2.30 | | | | | Кa | 35 000 | Conical horn | .1 | CW | 0.15, 0.76, 2.30, and 3.48 | Station number 4; x/D of 3.48 | | TABLE V.- COMPUTED VALUES OF IMPULSE, PRECESSION CONE ANGLE, AND PRECESSION FREQUENCIES (EQS. (C1) TO (C4)) | Ti abt |] | L | θ , | $^{ u}{ m H}'$ | ν
b'
Hz | | |--------|---------|-----------|------------|----------------|---------------|--| | Flight | N-m-sec | lb-ft-sec | deg | Hz | | | | C-I | 3.7 | 2.7 | 2.48 | 0.704 | 2.25 | | | C-II | 3.2 | 2.3 | 2.00 | .800 | 2.25 | | TABLE VI.- PREFLIGHT-MEASURED SPACECRAFT MOMENTS OF INERTIA* AND FLIGHT-MEASURED ROTATION RATES | Flight |] | I _X | $I_{\mathbf{Y}}$ | | ${ t I}_{ ext{Z}}$ | | р, | ω_{I} , | |--------|-------------------|----------------------|-------------------|----------------------|--------------------|----------------------|---------|----------------| | | kg-m ² | slug-ft ² | kg-m ² | slug-ft ² | kg-m ² | slug-ft ² | rad/sec | rad/sec | | C-I | 4.62 | 3.41 | 19.31 | 14.24 | 19.66 | 14.50 | 18.5 | 0.190 | | C-II | 4.68 | 3.45 | 18.06 | 13.32 | 17.92 | 13.22 | 19.1 | .175 | ^{*}Moments of inertia constant during data period. Figure 1.- Launch vehicles. (a) RAM C-II ground track. (b) RAM C-I and C-II flight events. Figure 2.- Ground track and flight events. Time from lift-off, sec Figure 3.- Reentry trajectories. Figure 4.- Payload configurations shown with fourth-stage engines and separation motors. Figure 5.- Electrostatic probe and radio-frequency antenna locations. L-67-5814 (a) Photograph of rake. Figure 6.- Electrostatic probe rake. (b) Detail sketch of rake. Collection area of each ion collector was $0.0420~\rm{cm^2}$ ($0.006~\rm{in^2}$). Figure 6.- Concluded. Figure 7.- Circuit diagram for electrostatic probe system. L-70-8365.1 Figure 8.- Major components of electrostatic probe system. (a) Dynamic input-output curves. Figure 9.- Electrical characteristics of logarithmic amplifiers. Figure 10. - Electrostatic probe data format. L-71-7150 (a) Photograph of rake. (b) Rake configuration. Thermocouple distance from leading edge for RAM C-I was 0.0635 cm (0.025 in.) and for RAM C-II, the distance was 0.1016 cm (0.040 in.). Figure 11.- Thermocouple probe rake. Figure 12.- Ratio of electron densities inferred from probes and from microwave data as a function of electron density inferred from microwave data. (a) Electrostatic probes 1 and 2. Figure 13.- Ion current measurements from electrostatic probes on RAM C-I flight experiment. (b) Electrostatic probes 3 and 4. Figure 13.- Continued. (c) Electrostatic probes 5 and 6. Figure 13.- Continued. (d) Electrostatic probes 7 and 8. Figure 13.- Concluded. Figure 14.- Ion current measurements from electrostatic probes on RAM C-II flight experiment. Altitudes shown are 0.3658 km (1200 ft) too low because of use of RAM C-I trajectory. (b) Electrostatic probes 3 and 4. <u>__</u> 85 80 Altitude, ft Altitude, km 65 Figure 14.- Continued. ___ 55 (c) Electrostatic probes 5 and 6. Figure 14.- Continued. (d) Electrostatic probes 7 and 8. Figure 14.- Concluded. Figure 15.- Comparison of thermocouple-rake leading-edge temperatures. Figure 16.- Constant-temperature profiles from thermocouple measurements. Figure 17.- Electron density of RAM C-I flow field at standoff distances y ranging between 1 and 7 cm as inferred from electrostatic probe measurements. (b) Electrostatic probes 3 and 4. Figure 17.- Continued. (c) Electrostatic probes 5 and 6. Figure 17.- Continued. (d) Electrostatic probes 7 and 8. Figure 17.- Concluded. Figure 18.- Electron density of RAM C-II flow field at standoff distances y ranging between 1 and 7 cm as inferred from electrostatic probe measurements. Altitudes shown are 0.3658 km (1200 ft) too low because of use of RAM C-I trajectory. (b) Electrostatic probes 3 and 4. 70 Altitude, km 65 85 80 <u>ل</u> 55 Figure 18.- Continued. (c) Electrostatic probes 5 and 6. Figure 18.- Continued. (d) Electrostatic probes 7 and 8. Figure 18.- Concluded. Figure 19.- Measured time-average electron density profiles for RAM C-I at selected altitudes during no water injection. Figure 20.- Measured time-average electron density profiles for RAM C-II at four altitudes. Figure 21.- Comparison of measured electron densities for individual probes on RAM C-I and C-II. Altitudes for RAM C-II data are 0.3658 km (1200 ft) too low because of use of RAM C-I trajectory. (b) Probes 5 to 8. Figure 21. - Concluded. Figure 22.- Correlation of RAM C-II fixed-bias electrostatic probe measurements with spacecraft angle-of-attack motions. Figure 23. - Effects of water injection on electron density as inferred by RAM C-I electrostatic probes. Figure 24.- RAM C-I electron-density distribution profiles during side injection portion of cycle 3. Figure 25. - Effect of stagnation injection at flow rate 5 of cycle 4 on RAM C-I electron density distribution profiles at various altitudes. Figure 26.- RAM C-II longitudinal profiles of inferred peak electron density for constant altitudes. Figure 27.- Effects of RAM C-I reentry plasma on 225.7 MHz telemetry antenna. LCP, left circular polarization; RCP, right circular polarization. Figure 28.- Effects of RAM C-I reentry plasma on 259.7 MHz telemetry antenna. LCP, left circular polarization; RCP, right circular polarization. Figure 29.- Effects of RAM C-II reentry plasma on 225.7 MHz telemetry antenna. LCP, left circular polarization; RCP, right circular polarization. Figure 30.- Comparison of inferred electron densities. Figure 31. - Comparison of RAM C-II electrostatic probe measured data with theoretical electron density profiles. Figure 32. - Comparison of high-altitude electron density at aft body station. Figure 33.- Comparison of RAM C-II plasma diagnostic measurements with theoretical calculations. Figure 34.- Variation of normalized probe current with normalized potential difference between probe and plasma for range of γ . Figure 35. - Inverted form of space-charge-limited diode equation. Figure 36.- Normalized current $\ I_n$ collected by a probe perpendicular to the directed velocity as a function of the ratio $\ S$ of directed to random velocity. Dashed lines indicate asymptotes. Figure 37.- Variation of normalized current with dimensionless probe potential for various speed ratios at $\gamma = 100$. Figure 38.- Normalized probe current R as a function of the ratio of modified potential energy to the kinetic energy H for various values of γ . Figure 39. - Computed gas temperature as a function of altitude for electrostatic probe locations. 119 Figure 40. - Computed flow velocity as a function of altitude for electrostatic probe locations. (a) Illustration of body rotations. (b) Illustration of orientation with wind axis. Figure 41. - Spacecraft axis system. Figure 42. - Correlation of measured electron densities with measured normal acceleration on RAM C-II. Figure 43.- Locations of probe rakes relative to axes systems. Figure 44. - Spacecraft precession in force-free space. Figure 45.- Comparisons of gyro-measured spacecraft rotation rates with computed rotation rates. Figure 46. - Computed characteristic wind angles. Figure 46.- Concluded.